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1. Introduction

Factor models are widely used in many scientific fields, and in particular in the study of financial
data. Their popularity is partly due to the easiness of their implementation and their effectiveness
in dimension reduction. More and more observable factors have been investigated and reported (see,
e.g., Ross (1976), Sharpe (1994), Fama and French (1993, 2015) and Carhart (1997)) as driving stock
returns. Researchers have also found common components in other attributes of financial assets such
as volatility and liquidity. For example, Chordia et al. (2000) document the commonality in liquidity,
which remains significant after controlling for volatility, volume, and price. The factor structure is
not found in isolation. Indeed, price and other attributes of stocks have been found to have correlated
common factors. Hasbrouck and Seppi (2001) use principal component analysis to show that common
factors exist in order flows and equity returns. In addition, using canonical correlation analysis, they
find that the common factor in returns is highly correlated with the common factor in order flows.
Hallin and Lǐska (2011) propose a two-step general dynamic factor method to account for a joint factor
structure of sub-panels, which is further developed by Barigozzi and Hallin (2016) and Barigozzi and
Hallin (2017) for extracting the market volatility shocks. They find that returns and volatilities can
be decomposed into four mutually orthogonal components: a strongly idiosyncratic component, a
strongly common component, a weakly common component, and a weakly idiosyncratic component.

The increasing availability of high-frequency transaction data motivates applying this method-
ology to intraday stock prices. However, this setting raises certain theoretical and computational
challenges. Compared to the discrete-time factor model, new mathematical tools are required to
deal with a continuous-time setting, where long-span asymptotics (also called increasing domain
asymptotics) gives way to infill asymptotics (also called fixed domain asymptotics). For example,
Fan et al. (2016) and Aı̈t-Sahalia and Xiu (2017) extend Fan et al. (2013)’s Principal Orthogonal
complEment Thresholding (POET) method to high-frequency factor models. Market microstructure
is an additional challenge that must be faced. The specifics of market organization and market
participants’ behavior induce certain short-run patterns in security prices. These patterns, such as
bid-ask bounce and price-discreteness, lead to a deviation from the fundamental values (also known
as efficient prices) of the securities. The security prices are thereby contaminated with market mi-
crostructure noise, which affects the estimation of parameters of interest such as volatility. Market
microstructure models have been used to capture a variety of frictions inherent in the trading the
efficient price process. Roll (1984) is among the first to propose a dichotomous structure in which the
observed market price is the sum of the efficient price and an exogenous i.i.d. bid-ask spread. After
that, Hasbrouck and Ho (1987), Choi et al. (1988) and Hasbrouck (1993) consider extended models
with positive dependence in bid and ask transactions. More complicated price patterns arising from
microstructure noise, such as asynchronous trading, have been investigated by researchers under the
fundamental dichotomous structure.

High-dimensional models with microstructure noise have been developed more recently. Wang
and Zou (2010) propose the first noise-robust estimators for the integrated volatility matrix and
establish an asymptotic theory that allows both the sample size and the number of assets to approach
infinity, see also Tao et al. (2011, 2013a,b), and Kim et al. (2016) for related results. However,
these papers assume that the integrated volatility matrix is sparse, which often contradicts our
intuition from low frequency data analysis. To solve this problem, Pelger (2019) and Dai et al.
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(2019) develop a continuous-time factor model with microstructure noise. Likewise, Bollerslev et al.
(2019) investigate a continuous-time factor model and assume that the microstructure noise can have
a factor structure itself. They use the modulated realized covariance estimator (henceforth MRC) of
Christensen et al. (2010) to eliminate the effect of the microstructure noise on the estimation without
explicitly estimating the factors of the microstructure noise and separating them from those of the
efficient prices. They establish the consistency and bound the rate of convergence of the estimated
integrated covariance matrix of the efficient price process in the large dimensional case. Related to
this, Pelger (2019) classifies factors in a high-frequency factor model into jump factors and continuous
factors.

We consider the dual factor model of Bollerslev et al. (2019) but we take a different approach
to estimation. Our goal is to identify and separate the factors and common components from both
sources: the efficient price process and the microstructure noise process. Factors for the efficient
prices arise from information about future security cash flows and thereby are long-lasting, whereas
factors for the microstructure noise are transient and due to the nature of trading behavior; both
are of interest. We develop a methodology that is inspired by Bai and Ng (2004), who propose a
test procedure called Panel Analysis of Non-stationarity in Idiosyncratic and Common Components
(PANIC), which can be used to identify non-stationary factors in discrete time series. We extend
the PANIC approach to our high-frequency dual factor model where the concept of co-integration
cannot be used. Our methodology is in three parts. First, we estimate the common factors and
loadings of both signal and noise components simultaneously from the observed return matrix. The
PCA method identifies factors and idiosyncratic errors by the eigenvalues. The common factors have
eigenvalues that diverge at a rate of d, where d is the number of assets, and the idiosyncratic errors
have bounded eigenvalues. There is a big gap from O(d) to O(1) so that even if the efficient returns are
of a smaller order, we are still able to identify their (weak) factors in the large dimensional case. The
second step separates the return factors into the efficient price factors and the microstructure noise
factors. This involves a second PCA step on the cumulated factors found in the first step, following
the approach of Bai and Ng (2004). The final step is to cumulate the return factors to define the
common factors in prices. We establish the consistency of our procedures as the number of assets
increases and the number of infill observations for each asset increases. Our asymptotic framework
allows for a rich diversity in the relative size of the efficient price process and the microstructure noise
and in the relative size of the common component of the microstructure noise and the idiosyncratic
components of the noise. This is important because a number of authors have documented that in
frequently traded assets, the microstructure noise component can be quite small. Also, the Epps
effect, whereby observed cross asset correlations shrink with sampling frequency, can be captured
in our framework when the idiosyncratic component of the noise is larger element by element than
the common component. Our model allows the so-called “weak factors”, c.f., Briggs and MacCallum
(2003) and Onatski (2010). We provide a full analysis of the convergence rates of all our estimators,
which are affected by the magnitudes of the components of microstructure noise. To determine the
number of factors we use several methods proposed in the discrete time literature and investigate
their performance on simulated data. We find that the Bai and Ng (2002) information criterion
performs well in terms of selecting the total number of factors and the PANIC test works well in our
setting for determining the number of factors in the efficient price process. We apply our method

3



to the intraday returns of S&P 500 Index constituents. The empirical analysis provides evidence of
co-movement of the microstructure noise.

The rest of the paper is organized as follows. Section 2 specifies the model and its assumptions.
Section 3 proposes the high-frequency PANIC estimation procedure and presents the asymptotic
properties for the estimators. Section 3.3 provides finite-sample simulation results and Section 5
demonstrates the applicability of our proposed method through an empirical study. Section 6 con-
cludes. The proofs of our main results are relegated to the Appendix.

Throughout the paper, we use ||·||2 to denote the Euclidean norm of a vector. For a real symmetric
matrix S, we denote its k-th largest eigenvalue and trace by µk(S) and tr(S), respectively. For any
m×n matrix M = (mij), let ||M||sp, ||M||1, ||M||∞, ||M||F and ||M||MAX denote the spectral norm,
the l1 norm, the l∞ norm, the Frobenius norm, and the max norm of M, respectively. Specifically,
‖M‖sp =

√
µ1(MᵀM), ||M||1 = maxj

∑
i |mij|, ||M||∞ = maxi

∑
j |mij|, ‖M‖F =

√
tr(MᵀM) =√∑

i,jm
2
ij and ||M||MAX = maxi,j |mij|. Let 1n denote an n-dimensional vectors of 1’s and Ln an n-

by-n lower triangular matrix where all diagonal and below-diagonal entries are 1’s. Also let a∨ b and
a∧ b denote max{a, b} and min{a, b}, and x+ and x− denote max{0, x} and min{0, x}, respectively.

2. Model Setup and Assumptions

2.1. Dual factor structure

Let Xit denote the observed log transaction price of stock i at time t, for i = 1, ..., d. We allow d
to diverge with n, although we have suppressed the subscript n for d. For the sake of simplicity, we
assume that price observations of all stocks are synchronously collected, and that price observations
for each stock are equidistantly collected in the fixed time interval [0, T ]. Thus we do not consider
non-synchronous trading explicitly. Without loss of generality, we let T = 1. Let n be the number
of observations and ∆ = 1/n. Then, the prices are observed at the time points t = 0,∆, 2∆, . . . , n∆.
Although we assume the length of the time interval between any two successive transactions to be
equal, our results still hold under the more general assumption that the length of the time interval
is unequal but is uniformly of order 1/n.

We assume that the observed log transaction price, Xit, can be decomposed into the unobserved
efficient log-price X∗it plus a noise component Zit, i.e.,

Xit = X∗it + Zit or Xt = X∗t +Zt, (2.1)

where X∗t = (X∗1t, . . . , X
∗
dt)

ᵀ
and Zt = (Z1t, . . . , Zdt)

ᵀ
. For each component of Xit, we introduce a

factor structure (see Assumptions 1 and 2 below) and therefore, name the model as a dual factor
model.

Assumption 1. (Factor Structure for Efficient Log-price)
(i) The efficient log-price X∗t follows a factor model of the form,

dX∗t = ΛFdFt + dUt,
dFt = σFtdB

F
t ,

dUt = σUtdB
U
t ,
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where ΛF = (λF,ik)1≤i≤d,1≤k≤KF denotes the d × KF matrix of factor loadings, KF is the number
of factors, Ft = (F1t, ..., FKF t)

ᵀ
denotes latent factors, Ut = (U1t, ..., Udt)

ᵀ
is the idiosyncratic com-

ponent, σFt is a KF × KF càd-làg spot volatility matrix for factors, σUt is a d × d càd-làg spot
volatility matrix for idiosyncratic errors, and BF

t = (BF
1t, . . . , B

F
KF t

)
ᵀ

and BU
t = (BU

1t, . . . , B
U
dt)

ᵀ
are

independent Brownian motions.
(ii) The initial states of Ft and Ut satisfy ‖F0‖MAX = OP (1) and ‖U0‖MAX = OP (1).
(iii) Denote the spot covariance matrices of Ft and Ut by ΣFt = σFtσ

ᵀ

Ft and ΣUt = σUtσ
ᵀ

Ut, and
define ΣFt− = lim∆→0 ΣF,t−∆ and ΣUt− = lim∆→0 ΣU,t−∆. Then, ΣFt, ΣFt−, ΣUt and ΣUt− are all
positive-definite and satisfy

max{‖ΣFt‖MAX, ‖ΣFt−‖MAX, ‖ΣUt‖MAX, ‖ΣUt−‖MAX} ≤ Cσ

for all t ∈ [0, 1], where Cσ is a positive constant independent of n and d.

Remark 2.1. Our dual factor model follows the setting of Bollerslev et al. (2019), and inherits
several limitations. Firstly, we do not allow a drift term in the diffusion model. More general
settings can be seen in Dai et al. (2019) and Barigozzi et al. (2020b) for instance. Secondly, we
assume that the factor loadings are constant and thus, neither random nor time-varying loadings are
allowed. We refer to Aı̈t-Sahalia et al. (2020) for high-frequency factor models with time-varying
betas. Thirdly, we assume the number of factors is fixed. We refer to Fan et al. (2011, 2016) for
factor models with the number of factors increasing with d. Another limitation is that jumps are
excluded in our model. Dealing with jumps would require more complicated procedures and hence, we
leave it for future work.

Assumption 2. (Factor Structure for Market Microstructure Noise)
The microstructure noise Zt follows a factor model whose magnitude may depend on the sampling
frequency, that is

Zt = ΛGDGGt + DVVt, (2.2)

where ΛG = (λG,ik)1≤i≤d,1≤k≤KG denotes the d × KG matrix of factor loadings with KG being the
number of factors for microstructure noise, Gt = (G1t, ..., GKGt)

ᵀ
denotes the latent factors, Vt =

(V1t, ..., Vdt)
ᵀ

is the vector of idiosyncratic components, and DG and DV are two diagonal matrices
satisfying µ1(DG) = O(nτ̄G), µ1(D−1

G ) = O(n−τG) and µ1(DV ) = O(nτ̄V ), where τ̄G, τG, and τ̄V are
some constants.

The introduction of DG and DV in (2.2) allows the microstructure noise to be larger or smaller in
magnitude than the efficient log-prices, depending on the values of τ̄G and τ̄V (see also Kalnina and
Linton (2008) for a model where the microstructure noise can be large or small, depending on the
value of a magnitude parameter). With such a setup, the magnitude of ΛG, Gt and Vt is independent
of n. A similar treatment can be found in Kim et al. (2016). Our model is an extension of the model
of Bollerslev et al. (2019), who only consider DG = IKG and DV = Id. However, they use a similar
setting when generating simulation data (also see Section 3.3) without discussing the asymptotic
impacts of DG and DV .

To introduce the first-differenced form of the dual factor model, we use little letters to denote the
first-order differences of random variables. Specifically, define the return as xt = Xt−Xt−∆, and the
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efficient return (or frictionless return) as x∗t =
∫ t
t−∆

dX∗s = X∗t −X∗t−∆. Denote ft =
∫ t
t−∆

σfsdB
F
s =

Ft − Ft−∆, gt = Gt −Gt−∆, zt = Zt −Zt−∆, ut =
∫ t
t−∆

σUsdB
U
s = Ut −Ut−∆, and vt = Vt − Vt−∆.

Then by (2.1)–(2.2), we can write the dual factor model as
xt = x∗t + zt
x∗t = ΛFft + ut
zt = ΛGDGgt + DV vt

(2.3)

Combining the factor structures for x∗t and zt, we have

xt = ΛFft + ut + ΛGDGgt + DV vt,

= ΛHDHht +wt, (2.4)

where ht = (f
ᵀ

t , n
−1/2g

ᵀ

t )
ᵀ
, ΛH = (ΛF ,ΛG), wt = ut + DV vt and DH = diag(IKF , n

1/2DG). This can
be seen as a factor structure for xt with ht = (f

ᵀ

t , n
−1/2g

ᵀ

t )
ᵀ

being the factors and ΛH = (ΛF ,ΛG)
being the factor loadings. Note that gt is divided by n1/2 in ht so that both components of ht are
of the same magnitude. Consequently, the magnitude matrix DG is multiplied by n1/2 in DH . This
also gives more insight into the role DG plays. If τ̄G > −1/2, the factors of the microstructure noise
dominate those of the efficient returns and vice versa. Similarly, since ut and n−1/2vt are of the same
magnitude, if τ̄V > −1/2, the idiosyncratic components of the microstructure noise dominates those
of the efficient returns and vice versa.

Denote the number of independent factors in factor model (2.4) as KH . If ft and gt are collinear,
KH will be less than KF + KG. In such a case, the efficient prices and microstructure noise are
not separable and the dichotomous structure fails. Thus for identification purposes, we exclude this
situation and make the following assumption .

Assumption 3. (Independence between efficient prices and microstructure noise) The discrete time
series Gt and Vt are independent of the continuous-time processes Ft and Ut.

Assumption 4. (Factor loadings) The factor loadings matrix ΛH satisfies

‖ΛH‖MAX < CΛ, ‖Λᵀ

HΛH/d‖sp < CΛ, ‖(Λᵀ

HΛH/d)−1‖sp < CΛ,

where CΛ is a positive constant independent of n and d.

Remark 2.2. If σFt is a constant spot volatility matrix that does not vary with t, then we can use
the notion of cointegration as in Bai and Ng (2004) when T → ∞. In this case, the cointegration
rank of Ht := (F

ᵀ

t , n
−1/2G

ᵀ

t )
ᵀ

is KH −KF = KG, which is the number of factors for microstructure
noise.

Remark 2.3. It is prevalent to assume independence between price components due to fundamental
security value and noise attributable to market rules and trading mechanisms in a univariate mi-
crostructure model. One of the reasons is modelling simplicity, so that the two components of the
model can be identified and the model can have sensible economic and statistical representation and
interpretation. However, the independence assumption may sometimes be violated. For example,
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it is shown in Delattre and Jacod (1997) and Li and Mykland (2007) that this assumption can be
substantially weakened, especially for processes contaminated with rounding errors. Glosten (1987)
and Glosten and Harris (1988) also show that the microstructure noise may no longer be uncorre-
lated with the efficient price when asymmetric information is involved. Recently, there has been some
research that allows correlation between them, such as Kunitomo and Kurisu (2019), who modify
the Separating Information Maximum Likelihood due to Kunitomo and Sato (2013) to detect hidden
factors of quadratic variation in the presence of correlated market microstructure noise.

For easy reference, we summarise the notation used for variables and factors in Table 1. We use dif-
ferent fonts to distinguish between matrices, vectors and scalars. For example, X = (X∆, . . . ,Xn∆)

ᵀ

is an n× d matrix of observed prices, X
ᵀ

s∆ is its s-th row, and Xi,s∆ is the (s, i)-entry of the matrix
X. Following the same rule, other variables are defined analogously.

Table 1: Notation for variables/factors in the dual factor model

Variables Aggregation Form First-difference Form
Matrix Row Element Matrix Row Element
-wise -wise -wise -wise -wise -wise

Observed price X Xt Xit x xt xit
Efficient price (EP) X∗ X∗t X∗it x∗ x∗t x∗it
Microstructure noise (MN) Z Zt Zit z zt zit
Factors for EP F Ft Fjt f ft fjt
Factors for MN G Gt Gjt g gt gjt
Total factors H Ht Hjt h ht hjt
Idiosyncratic errors for EP U Ut Uit u ut uit
Idiosyncratic errors for MN V Vt Vit v vt vit
Total idiosyncratic errors W Wt Wit w wt wit
1 The first dimension of the matrices in the table are set as time, while the second dimension are

set as a stock or a factor. We have t = ∆, · · · , n∆, 1 ≤ i ≤ d and 1 ≤ j ≤ K, where K = KF ,
KG, or KH , depending on the circumstance. Note that in the subscript of the element-wise
notation, we write the column index first.

2 Although when t = 0, Xt is observable, t starts from ∆ in the matrix-wise notation for both
aggregation form and first-difference form, for the sake of consistency.

2.2. Covariance structure

Define the integrated covolatility matrix of ft and ut as ΣF and ΣU , respectively. That is
ΣF =

∫ 1

0
ΣFtdt and ΣU =

∫ 1

0
ΣUtdt. Then the factor structure for efficient prices leads to the

following identity,
Σx∗ = ΛFΣFΛ

ᵀ

F + ΣU , (2.5)

where Σx∗ is the integrated covolatility matrix of x∗t . Similarly, the factor structure for microstructure
noise leads to the following identity,

Σz = ΛGDGΣgDGΛ
ᵀ

G + DV ΣvDV , (2.6)
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where Σz = Var(zt), Σg = Var(gt), and Σv = Var(vt).
1 For the integrated covolatility matrix of

observed prices, we combine (2.5) and (2.6) to obtain

Σx = ΛHDHΣhDHΛ
ᵀ

H + Σw, (2.7)

where Σx = Σx∗+nΣz, Σh = diag(ΣF ,Σg), and Σw = ΣU +nDV ΣvDV . The reason we multiply Σz

by n is to be consistent with its sample estimates. Note that Σ̂z = n−1
∑n

i=1 ztz
ᵀ

t is an approximation

of Σz while Σ̂x∗ =
∑n

i=1(x∗t )(x
∗
t )

ᵀ
is an approximation of Σx∗ .

In order to identify the factor structure, we make the following sparsity assumption, as in Fan
et al. (2013) and Aı̈t-Sahalia and Xiu (2017). For ease of composition, we define

τ̄ ∗+G = (1/2 + τ̄G)+, τ ∗−G = (1/2 + τG)−, τ̄ ∗V = (1/2 + τ̄V ), and τ̄ ∗+V = (1/2 + τ̄V )+.

Assumption 5. (Sparsity of idiosyncratic integrated covariance matrices) The integrated volatility
matrices of the idiosyncratic components satisfy

‖ΣU‖1 = O(mU,d), ‖Σv‖1 = O(mv,d), mw,nd/(d
1/2n2τ∗−G )→ 0 with mw,nd = mU,d + n2τ̄∗Vmv,d.

Under Assumption 5, we have ‖Σw‖1 = O(mw,nd). It is worth pointing out that the condition

mw,nd/(dn
2τ∗−G ) → 0 is sufficient for the identification of the factors, see Lemma A.1. When only

the weaker condition is required, we refer to the assumption as Assumption 5*. In order to obtain
consistent estimates, we further require mw,nd/(d

1/2n2τ∗−G )→ 0 as in Assumption 5. That estimation
of an approximate factor model requires more strict sparsity conditions than identification is also
observed in Aı̈t-Sahalia and Xiu (2017).

We also make the following assumption on the stationarity of the microstructure noise compo-
nents.

Assumption 6. (Stationary and sub-Gaussian microstructure noise)
(i) The series {Gt,Vt} is strictly stationary. In addition, E[Gjt] = E[Vit] = E[GjtVit] = 0 for all
1 ≤ i ≤ d, 1 ≤ j ≤ KG and t = 0,∆, . . . , n∆.
(ii) There exist positive constants Cα > 0 and γ1 > 0 such that the strong mixing sequence α(.) of
the series {Gt,Vt} satisfies α(s∆) ≤ Cα exp(−sγ1).
(iii) There exist b1 > 0, γ2 > 0, with γ−1

1 + 3γ−1
2 > 1, such that for all c > 0, we have

max
1≤j≤KG

P (|Gjt| > c) ≤ exp(1− (c/b1)γ2) (2.8)

and
max
1≤i≤d

P (|Vit| > c) ≤ exp(1− (c/b1)γ2), (2.9)

1The rules of using capital letters in the subscript are that (i) For factor loading matrices, magnitude matrices
and number of factors, we use capital letters; (ii) For the integral volatility matrices of a continuouse processes, we
use capital letters; (iii) For other cases such as the covariance matrices of discrete time series and the contaminated
integral volatility matrices, e.g., Σx∗ and Σz, we choose according to the notation of the series.
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for t = 0,∆, . . . , n∆.
(iv) There exist b2 > 0, γ3 > 0, with γ−1

1 + 3γ−1
3 > 1, such that for all c > 0, we have

max
1≤j≤KH

P
(
d−1/2|λᵀ

H,·,jVt| > m
1/2
v,d · c

)
≤ exp(1− (c/b2)γ3), (2.10)

for t = 0,∆, . . . , n∆, where λH,·,j is the j-th column of ΛH ;
(v) Let 1/γ = 1/γ1 + 3/(γ2 ∨ γ3). Then, (log d)2/γ−1 = o(n).

Assumptions 6(i) and (ii) are similar to Assumption 3.2(i) and Assumption 3.3 in Fan et al. (2013).
The strong mixing condition is more general than Assumptions 1 and 3 in Barigozzi et al. (2020b) in
which the common components and idiosyncratic components of the microstructure noise are both
assumed to be linear processes. The series Gt and Vt can be serially correlated, which is more general
than the assumption in Kim et al. (2016). Moreover, Vt can be cross-sectionally dependent, in which
case, (2.2) gives an approximate factor model for the microstructure noise. More general assumptions
can be found in Bai and Ng (2002) which permit weakly correlated idiosyncratic errors. Assumption
6(iii) requires exponential-type tails for the distributions ofGt and Vt, which is similar to Assumption
3.2(iii) of Fan et al. (2013) and Condition A1 of Tao et al. (2013b). If the microstructure noise has a
heavier tail and the sub-Gaussian assumption is violated, robust estimation can be used to mitigate
the influence of heavy tails (see, for example Fan and Kim (2018)). But to focus on the key objective
of this paper (i.e., to identify and estimate factors for both efficient price and microstructure noise),
we do not consider it in this paper.

Assumption 6(iv) is an additional exponential tail condition. Intuitively, let us consider two
extreme cases. If vt is cross-sectionally jointly independent, (2.10) holds true with mv,d = 1. If vt is
cross-sectionally comonotonic, (2.10) holds true with mv,d = d. The sparsity condition in Assumption
5 rules out the second case. But vt can be cross-sectionally weakly dependent, with mv,d between 1
and d1/2n−1−2τV +(1+2τG)− . Assumption 6(iv) guarantees that∥∥∥∥∥(nd)−1

n∑
s=1

Λ
ᵀ

Hvs∆v
ᵀ

s∆ΛH − d−1Λ
ᵀ

HΣvΛH

∥∥∥∥∥
MAX

= OP (mv,d(log d/n)1/2),

see Lemma B.2(iv). Assumption 6(iv) can also be seen as an extension of the condition (see Assump-
tion F.3 of Bai (2003) and Assumption 3.4(iii) of Fan et al. (2013))

max
1≤j≤KH

E[(d−1/2|λᵀ

H,·,jvt|)4] < C,

for some positive constant C. The latter condition is no longer true when d−1‖Λᵀ

HΣvΛH‖MAX →∞.
Assumption 6(v) presents a trade-off between the mixing and tail conditions and the dimension d.

3. Estimation Procedure and Asymptotic Results

In this section, we develop a three-step estimation procedure for the common factors, F and
G, of the dual factor model. The estimation procedure is based on two PCA procedures and so we
call it Double PCA or DPCA. The asymptotic results are presented step by step, so as to provide
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a better understanding on what the intermediate estimators estimate. In the first step, the factors
and factor loadings for the combined factor model (2.4) in the first-difference form are estimated. In
the second step, we cumulate the factors and separate the factors of the efficient prices from those of
the microstructure noise in the first-difference form. In the last step, we cumulate f̂t and ĝt to get
F̂t and Ĝt, respectively. For the time being, we assume that the number of factors KF and KG are
known, and KH = KF +KG. We will discuss how to determine them in Section 4.1.

An additional technical condition is required, which is similar to Assumption G in Bai (2003) and
Assumption 4 in Aı̈t-Sahalia and Xiu (2017) in the case of DH = IKH . Note that we have assumed
the boundedness of the largest eigenvalue of the matrix d−1Λ

ᵀ

HΛH in Assumption 4, instead of the
convergence of the matrix. Hence, we do not introduce a limiting matrix for it.

Assumption 7. (Distinct eigenvalues)
The d × d matrix ΛHDHΣhDHΛ

ᵀ

H has asymptotically distinct eigenvalues in the sense that for
j = 2, . . . d

µj−1(ΛHDHΣhDHΛ
ᵀ

H)− µj(ΛHDHΣhDHΛ
ᵀ

H)

µKH (ΛHDHΣhDHΛ
ᵀ

H)
> C,

when (n, d)→∞, for j = 2, ..., KH , where C is a positive constant independent of n and d.

We also require the following assumption, which restricts the relation between n and d.

Assumption 8. (Relation between n and d) As n→∞,
(i)

n1+4τ∗−G −4(τ̄∗+G ∨τ̄
∗+
V )/(log d)→∞,

and
(ii)

n1+4τ∗−G −4(τ̄∗+G ∨τ̄
∗+
V )m2

w,nd/(d
2 log d)→ 0.

When τ̄G = τG = τ̄V = −1/2 and mw,nd = O(1), Assumption 8 degenerates to n/(log d) → ∞
and n/(d2 log d)→ 0, which are similar to the corresponding condition in Theorem 3.1 of Fan et al.
(2013) and assumption A1 of Tao et al. (2013b).

3.1. First step: PCA estimation in first-difference form

The first step in our estimation procedure is to apply PCA to the first-difference form of the dual
factor model to extract estimates of all the factors and factor loadings (for both efficient prices and
microstructure noise).

Recall that x = hΛ
ᵀ

H + w. Different identification conditions for the factor structure can be
used, according to whether we would like to normalise the factors or the factor loadings. Accordingly,
there are two ways to implement a PCA to estimate the factors and factor loadings. If we normalise
the factor loadings, the PCA estimator solves the following optimisation problem,{

min
ΛH ,h

‖x−hΛ
ᵀ

H‖F ,

s.t. Λ
ᵀ

HΛH/d = IKH .
(3.1)

10



Computationally, we conduct an eigen-decomposition of the d × d matrix x
ᵀ
x, and obtain Λ̂H =(

λ̂H1, . . . , λ̂Hd

)ᵀ

, which is the d×KH matrix consisting of the KH eigenvectors (multiplied by
√
d)

corresponding to the KH largest eigenvalues of x
ᵀ
x. The common factors can be estimated as

ĥ = xΛ̂H/d =
(
ĥ∆, . . . , ĥn∆

)ᵀ

. (3.2)

Alternatively, if we normalise the factors, the PCA estimator solves the following optimisation
problem, {

min
ΛH ,h

‖x−hΛ
ᵀ

H‖F ,
s.t. h

ᵀ
h = IKH .

Computationally, we conduct PCA* (we add an asterisk to distinguish it from the PCA above that

is based on the normalisation of the factor loadings) on the n × n matrix xx
ᵀ
, and get ĥ∗ =(

ĥ∗∆, . . . , ĥ
∗
n∆

)ᵀ

denoting the n×KH matrix consisting of the KH eigenvectors corresponding to the

KH largest eigenvalues of xx
ᵀ
. The common factors can be estimated as

Λ̂
∗
H = x

ᵀ
ĥ∗ =

(
λ̂
∗
H1, . . . , λ̂

∗
Hd

)ᵀ

. (3.3)

It is easy to show that both ĥ and ĥ∗ are eigenvectors of xx
ᵀ
, and thereby, they span the same

space. In this sense, the two ways of PCA are equivalent. Bai and Li (2012) point out that the
analysis of one PCA representation will carry over to the other by switching the roles of n and d
and the role of the factor loadings and factors, and thus it is sufficient to carefully examine the
asymptotic properties of one representation. All high-frequency factor models, as we know, use (3.1)
to implement PCA. The main reason may be that the spot covariance matrices is time-varying and
thereby the n× n matrix xx

ᵀ
is conceptually more difficult to analyse.

However, in our three-step estimation procedure, the final estimators based on the above two
PCAs will not be equivalent. Since the first-step factor estimators will be fed into the second step in
cumulative form for another PCA, whether the factors are normalised in the first step will affect the
final results. In Section 3.3, we will compare the small sample performance of estimators based on
the two different PCA representations in the first step. We will see that PCA* always outperforms
PCA. Hence, we will use PCA* for our first step and derive the asymptotic theory based on it.

Since the asymptotic theory of ĥ is easier to establish than that of ĥ∗, as discussed above, we
first prove the consistency of ĥ (see Lemma A.2 in Appendix) and then use the following relation

ĥ∗ = ĥ(ĥ
ᵀ
ĥ)−1/2 and Λ̂

∗
H = Λ̂H(ĥ

ᵀ
ĥ)1/2, (3.4)

to prove the consistency of ĥ∗. When d is much larger than n, it is computationally more convenient
to conduct PCA on the n × n matrix xx

ᵀ
, and vice versa. Then the relations in (3.4) can be used

to get the desired form of estimates.

The following theorem shows the uniform rate of convergence for Λ̂
∗
H and ĥ∗ of the dual factor

model. For ease of composition, we denote

and = (log d)1/2n
τ̄∗+V +τ̄∗+G ∨τ̄

∗+
V

n1/2
+
mw,nd

d1/2
. (3.5)
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Theorem 3.1. Suppose that Assumptions 1–8 are satisfied. We have
(i) ∥∥∥ĥ∗ᵀ − (R∗)−1(h

ᵀ
h)−1/2h

ᵀ
∥∥∥
MAX
≤
∥∥∥ĥ∗ᵀ − (R∗)−1(h

ᵀ
h)−1/2h

ᵀ
∥∥∥
sp

= OP

(
n−2τ∗−G · and

)
, (3.6)

where the rotation matrix R∗ is defined by

R∗ = d1/2(h
ᵀ
h)−1/2Λ

ᵀ

HΛ̂HD̂
−1/2
x,KH

,

in which D̂x,KH = dĥ
ᵀ
ĥ = Λ̂

∗ᵀ

H Λ̂
∗
H is a KH ×KH diagonal matrix with the diagonal elements being

the first KH largest eigenvalues of x
ᵀ
x arranged in a descending order;

(ii) ∥∥∥Λ̂∗H −ΛHDH(h
ᵀ
h)1/2R∗

∥∥∥
MAX

= OP

(
n−2τ∗−G · and

)
; (3.7)

(iii) ĥ∗Λ̂
∗ᵀ

H = ĥΛ̂
ᵀ

H and ∥∥∥ĥ∗Λ̂∗ᵀH −hDHΛ
ᵀ

H

∥∥∥
MAX

= OP

(
nτ̄
∗+
G −2τ∗−G · and

)
; (3.8)

(iv) R∗ is an asymptotically orthogonal matrix, that is

‖R∗ᵀR∗ − IKH‖sp = OP (n−2τ∗−G · and).

Note that n−2τ∗−G and = o(1) under Assumption 8. The theorem shows the uniform rate of con-

vergence for ĥ∗ of the dual factor model, which is similar to Theorem 5 in Aı̈t-Sahalia and Xiu
(2017) for high-frequency factor model without the magnitude matrices. The estimator ĥ∗ converges
to normalised factors (h

ᵀ
h)−1/2h

ᵀ
up to an asymptotically orthogonal matrix. The result is dif-

ferent from the uniform results for low-frequency factor models, e.g., Proposition 2 in Bai (2003)
and Theorem 3.3 in Fan et al. (2013). In a low-frequency factor model, the uniform convergence of
the estimator for n1/2(h

ᵀ
h)−1/2h

ᵀ
can be derived, while in a high-frequency factor model, only the

uniform convergence of the estimator for (h
ᵀ
h)−1/2h

ᵀ
can be achieved.

The introduction of the magnitude matrices provides an insight into how larger noise-to-signal
ratio can worsen the estimation. We can see that the convergence rates are affected by the magnitudes
of both DG and DV , by noticing that τ ∗−G directly affects the convergence rate and that τ̄ ∗+G and τ̄ ∗+V
affect and. The convergence rates are fastest (i.e., (log d)1/2n−1/2 +mw,ndd

−1/2) when τ̄G = τG = τ̄V =
−1/2. When common components of the microstructure noise have a larger or smaller magnitude

than that of the efficient prices, the estimators will be worse. Note that nτ̄
∗+
G −2τ∗−G · and (see Theorem

3.1 (iii)) grows with τ̄G when τ̄G > −1/2, and thus it may not converge to zero. However, this is
not a big problem, since the convergence of the estimator of common components still holds if we
re-scale the data by a factor of order n−τ̄

∗+
G . Nevertheless, if we require nτ̄

∗+
G −2τ∗−G · and = o(1), we

only need to extend Assumption 8(i) to n1+4τ∗−G −2τ̄∗+G −2τ̄∗+V −2(τ̄∗+G ∨τ̄
∗+
V )/(log d)→∞.
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3.2. Second step: PCA estimation in cumulative form

The second step aims to obtain a KH × KG matrix β̂ such that ĥ∗β̂ estimates the factors for
microstructure noise. Denote β = (OKG×KF IKG)

ᵀ
and β⊥ = (IKF OKF×KG)

ᵀ
. Then g := hβ

is the matrix of true factors for the difference of microstructure noise, and f := hβ⊥ is the matrix
of true factors for the difference of efficient prices. However, due to rotational indeterminacy of the
estimated factors, ĥ∗, instead of applying β and β⊥ directly on ĥ∗ to obtain estimates of g and f,
we need to find proper rotations of β and β⊥ that achieve this goal.

There are different ways to estimate such rotations of β and β⊥. For example, Barigozzi et al.
(2020b) use Johansen (1995)’s reduced rank estimation in a dynamic factor model to estimate the
cointegration coefficients of non-stationary factors (also see Section 4.2). However, their method
requires the specification of a finite-order vector autoregression (or a vector error correction model)
prior to estimation. By contrast, we will use a second-step PCA on cumulated factors to estimate
β and β⊥, which allows for more general (non)stationarity structure of the underlying processes.
This second step is similar to PANIC due to Bai and Ng (2004), which is developed from Stock and
Watson (1988) and Harris (1997).

For 1 ≤ s ≤ n, let Ĥ∗s∆ =
s∑

s1=1

ĥ∗s1∆ be an estimator of Hs∆. Define the demeaned Ĥ∗s∆

as Ĥ∗cs∆ = Ĥ∗s∆ − Ĥ∗, where Ĥ∗ = n−1
n∑
s=1

Ĥ∗s∆. In the matrix form, this can be written as

Ĥ∗c = Ĥ∗ − Ĥ∗, with Ĥ∗c = (Ĥ∗c∆ , . . . , Ĥ
∗c
n∆)

ᵀ
, Ĥ∗ = (Ĥ∗∆, . . . , Ĥ

∗
n∆)

ᵀ
, and Ĥ∗ = 1nĤ∗

ᵀ

. Define
the KH ×KH matrix

Ŵ = n−1Ĥ∗cᵀĤ∗c.

Let β̂⊥ be the matrix of eigenvectors associated with the largest KF eigenvalues of Ŵ and let β̂

be the matrix of eigenvectors associated with the rest of the KG eigenvalues. Then, β̂
ᵀ

⊥ĥ
∗
t is an

estimator of β
ᵀ

⊥ht = ft, and β̂
ᵀ

ĥ∗t is an estimator of β
ᵀ
ht = gt.

Lemma 3.1. Under the assumptions of Theorem 3.1, β̂⊥ and β̂ are super-consistent in the sense
that:

β̂ −Ξ
ᵀ
βQβ = OP (n−1) (3.9)

β̂⊥ −Ξ−1β⊥Qβ⊥ = OP (n−1), (3.10)

where

Qβ = [β
ᵀ
ΞΞ

ᵀ
β]−1β

ᵀ
Ξβ̂, Qβ⊥ = [β

ᵀ

⊥(Ξ
ᵀ
)−1Ξ−1β⊥]−1β

ᵀ

⊥(Ξ
ᵀ
)−1β̂⊥,

Ξ = d1/2Λ
ᵀ

HΛ̂HD̂
−1/2
x,KH

= (h
ᵀ
h)1/2R∗.

The lemma shows that β̂ estimates a basis for the space spanned by Ξ
ᵀ
β. Using Lemma 3.1 and

Theorem 3.1, we can prove the following theorem, which gives the convergence rate for the estimators
of the factors for microstructure noise and the factor loadings for efficient prices. To this end, we
define

f̂∗ = ĥ∗β̂⊥, ĝ∗ = ĥ∗β̂, Λ̂
∗
F = Λ̂

∗
Hβ̂⊥, and Λ̂

∗
G = Λ̂

∗
Hβ̂.
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Theorem 3.2. Suppose that Assumptions 1–8 are satisfied. We have
(i) ∥∥∥f̂∗ − fβ

ᵀ

⊥(Ξ
ᵀ
)−1β̂⊥

∥∥∥
MAX
≤
∥∥∥f̂∗ − fβ

ᵀ

⊥(Ξ
ᵀ
)−1β̂⊥

∥∥∥
sp

= OP

(
n−2τ∗−G · and

)
; (3.11)

(ii)

‖ĝ∗ − gQβ‖MAX ≤ ‖ĝ
∗ − gQβ‖sp = OP

(
n−2τ∗−G · and

)
; (3.12)

(iii) ∥∥∥Λ̂∗F −ΛFQβ⊥

∥∥∥
MAX

= OP

(
n−2τ∗−G · and

)
; (3.13)

(iv) ∥∥∥Λ̂∗G −ΛGDGβ
ᵀ
Ξβ̂
∥∥∥
MAX

= OP

(
n−2τ∗−G · and

)
, (3.14)

where Qβ, Qβ⊥ and Ξ are defined in Lemma 3.1.

This lemma shows that f̂∗ and ĝ∗ are estimators of the factors for the first-differenced efficient

prices and microstructure noise with rotations β
ᵀ

⊥(Ξ
ᵀ
)−1β̂⊥ and Qβ, respectively, and that Λ̂

∗
F and

Λ̂
∗
G are estimators of the factor loadings for efficient prices and microstructure noise with rotations

Qβ⊥ and β
ᵀ
Ξβ̂, respectively. When we estimate the first-differenced common components for mi-

crostructure noise and efficient prices (i.e., gΛ
ᵀ

G and fΛ
ᵀ

F ), these rotations cancel out. Thus, we
have the following corollary.

Corollary 3.1. Suppose that Assumptions 1–8 are satisfied. We have
(i) ∥∥∥f̂∗Λ̂∗ᵀF − fΛ

ᵀ

F

∥∥∥
MAX

= OP

(
n−2τ∗−G · and

)
; (3.15)

(ii) ∥∥∥ĝ∗Λ̂∗ᵀG − gDGΛ
ᵀ

G

∥∥∥
MAX

= OP

(
nτ̄
∗
G−2τ∗−G · and

)
, (3.16)

where τ̄ ∗G = 1/2 + τ̄G and τ ∗−G = (1/2 + τG)−.

3.3. Third step: Cumulation of factors

Now we construct the estimates of F and G by cumulating f̂∗ =
(
f̂ ∗∆, . . . , f̂

∗
n∆

)ᵀ

and ĝ∗ =

(ĝ∗∆, . . . , ĝ
∗
n∆)

ᵀ

, respectively. That is, F̂∗ =
(
F̂ ∗∆, . . . , F̂

∗
n∆

)ᵀ

, Ĝ∗ =
(
Ĝ∗∆, . . . , Ĝ

∗
n∆

)ᵀ

, and Ĥ∗ =(
Ĥ∗∆, . . . , Ĥ

∗
n∆

)ᵀ

, where

F̂ ∗t =
∑

s:0≤s∆≤t

f̂ ∗s∆ and Ĝ∗t =
∑

s:0≤s∆≤t

ĝ∗s∆, Ĥ∗t =
∑

s:0≤s∆≤t

ĥ∗s∆.

More compactly, we can write F = Lnf, G = Lng and H = Lnh, and their estimates, F̂∗ = Lnf̂
∗,

Ĝ∗ = Lnĝ
∗ and Ĥ∗ = Lnĥ

∗ for some matrix Ln consisting of zeros and ±1. Since ‖Ln‖sp = 1, the
convergence rates for the estimators of the first-differenced factors are also the convergence rates for
the estimators for the aggregated factors. This leads to the following theorem.
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Theorem 3.3. Suppose that Assumptions 1–8 are satisfied. Then,
(i) for factors, we have∥∥∥Ĥ∗ − (H − 1nH

ᵀ

0 )(Ξ
ᵀ
)−1
∥∥∥
MAX
≤
∥∥∥Ĥ∗ − (H − 1nh

ᵀ

0)(Ξ
ᵀ
)−1
∥∥∥
sp

= OP

(
n−2τ∗−G · and

)
, (3.17)

∥∥∥Ĝ∗ − (G − 1nG
ᵀ

0)Qβ

∥∥∥
MAX
≤
∥∥∥Ĝ∗ − (G − 1nG

ᵀ

0)Qβ

∥∥∥
sp

= OP

(
n−2τ∗−G · and

)
, (3.18)

and ∥∥∥F̂∗ − (F − 1nF
ᵀ

0 )β
ᵀ

⊥(Ξ
ᵀ
)−1β̂⊥

∥∥∥
MAX
≤
∥∥∥F̂∗ − (F − 1nF

ᵀ

0 )β
ᵀ

⊥(Ξ
ᵀ
)−1β̂⊥

∥∥∥
sp

= OP

(
n−2τ∗−G · and

)
; (3.19)

(ii) for common components, we have∥∥∥Ĥ∗(Λ̂
∗
H)

ᵀ − (H − 1nH
ᵀ

0 )DHΛ
ᵀ

H

∥∥∥
MAX

= OP

(
nτ̄
∗+
G −2τ∗−G · and

)
, (3.20)∥∥∥Ĝ∗(Λ̂∗G)

ᵀ − (G − 1nG
ᵀ

0)DGΛ
ᵀ

G

∥∥∥
MAX

= OP

(
nτ̄
∗
G−2τ∗−G · and

)
, (3.21)

and ∥∥∥F̂∗(Λ̂∗F )
ᵀ − (F − 1nF

ᵀ

0 )Λ
ᵀ

F

∥∥∥
MAX

= OP

(
n−2τ∗−G · and

)
, (3.22)

where Qβ, Qβ⊥ and Ξ are defined in Lemma 3.1.

When τ̄G = τG = τ̄V = −1/2 and mw,nd = O(1), the uniform convergence rate of Ĥ∗ is
OP ((log d)1/2n−1/2 + d−1/2). In comparison, the uniform consistency result for the low-frequency
factor model in Bai and Ng (2004) is OP

(
n−3/4 + d−1/2

)
(see Lemma 2 in Bai and Ng (2004)). Our

estimators have slower convergence rates, which is mainly due to the different settings.

4. Simulation

4.1. Number of factors

In this paper, we apply the commonly-used information criterion proposed by Bai and Ng (2002)
to estimate the total number of factors. Then, we use the PANIC test procedure proposed by Bai
and Ng (2004) to determine the number of factors for efficient prices, and compare it to Hallin and
Lǐska (2007)’s spectral method.

To introduce Bai and Ng (2002)’s information criterion, we denote by Q a finite positive integer

that is no smaller than KH . For any 1 ≤ qH ≤ Q, we let ĥ∗(qH) =
(
ĥ∗∆(qH), . . . , ĥ∗n∆(qH)

)ᵀ

be the

matrix of estimated factors when the total number of factors is assumed to be qH , and denote by

Λ̂
∗
H(qH) the corresponding loadings matrix. The information criterion is defined as

IC1(qH) = log [Vn(qH)] + qH

(
n+ d

nd

)
log(

nd

n+ d
), (4.1)
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where Vn(qH) = ‖x− ĥ∗(qH)(Λ̂
∗
H(qH))

ᵀ‖F . The total number of factors is then estimated as

K̂H = arg min
0≤qH≤Q

IC1(qH), (4.2)

with IC1(0) = ‖x‖F for convention. For consistency of K̂H , we refer to the asymptotic results given
in Theorem 2 of Bai and Ng (2002).

Bai and Ng (2004) propose two tests to determine the number of nonstationary factors. We

adopt the one that does not specify a finite order VAR representation. For any 1 ≤ qF ≤ K̂H , we let
F̂∗(qF ) = Ĥ∗β̂⊥(qF ), when the number of factors for efficient prices is assumed to be qF . Let ξ̂Ft be

the residuals from estimating a first-order VAR of F̂∗(qF ) and Σ̂L,F (qF ) be the estimated long-run

covariance matrix of ξ̂Ft . The test statistic for H0 : KF = qF is defined by

MQ(qF ) = n(ν(qF )− 1) (4.3)

where ν(qF ) is the smallest eigenvalue of[
n∑
s=2

1

2

(
F̂ ∗s∆(qF )F̂ ∗

ᵀ

(s−1)∆(qF ) + F̂ ∗(s−1)∆(qF )F̂ ∗
ᵀ

s∆(qF )
)
− nΣ̂L,F (qF )

] ( n∑
s=2

F̂ ∗s∆(qF )F̂ ∗
ᵀ

s∆(qF )
)−1

. (4.4)

For a given significance level α, define

K̂F = max
0≤qF≤K̂H , pMQ(qF )>α

qF , (4.5)

where pMQ(qF ) is the p-value of the statistic MQ(qF ) obtained by simulation using vector standard
Brownian motions, and we define pMQ(0) = 1 for convention. We refer the reader to Theorem 1 of
Bai and Ng (2004) for the asymptotic distribution of the test statistic.

Hallin and Lǐska (2007)’s spectral method can also be used to estimate the number of factors for

efficient prices. Let Γ̂k be the d×d sample lag-k autocovariance matrix of xt. Define the lag window
estimator of the spectral density matrix of xt by

Σ̂x(θ) =
1

2π

Bn∑
k=−Bn

Γ̂ke
−ikθw(B−1

n k), (4.6)

where Bn is a suitable bandwidth and w(·) is a positive even weight function. Let νl(θ) be the l-th

largest eigenvalue of Σ̂x(θ) and define the following information criteria

IC2.i(q) = log

(
1

n(2Bn + 1)

Bn∑
h=−Bn

d∑
l=q+1

νl(θh)

)
+ qsi(n, d), i = 1, 2, 3, (4.7)

and

IC3.i(q) = log

(
1

n

d∑
l=q+1

νl(0)

)
+ qsi(n, d), i = 1, 2, 3, (4.8)
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where, with Mn = b0.75
√
nc and a constant ι,

s1(n, d) = ι · (M−2
n +M1/2

n n−1/2 + d−1) · log(min{M2
n,M

−1/2
n n1/2, d}),

s2(n, d) = ι · (min{M2
n,M

−1/2
n n1/2, d})−1/2,

and
s3(n, d) = ι · (min{M2

n,M
−1/2
n n1/2, d})−1 · log(min{M2

n,M
−1/2
n n1/2, d}).

Barigozzi et al. (2020b) show that KH can be estimated as

K̂H = arg min
1≤q≤Q

IC2.i(q) (4.9)

for any i = 1, 2, 3, and KF can be estimated as

K̂F = arg min
1≤q≤Q

IC3.i(q) (4.10)

for any i = 1, 2, 3. In practice, one can let Q = K̂H in (4.10) to make sure K̂F ≤ K̂H .

4.2. Alternative approaches for comparison

We consider two alternative approaches for comparison. The first approach, denoted as DPCA,
estimates the factors as ĥ in (3.2) instead of ĥ∗, and uses ĥ for the second-step PCA while keeping
the rest of the steps exactly the same. The second approach is proposed by Barigozzi et al. (2020a)

and Barigozzi et al. (2020b) and is denoted as PCA*-VECM. The PCA*-VECM uses ĥ∗t from the
first-step PCA* to construct a Vector Error Correction Model (VECM) in order to estimate β and
β⊥, while in our method, we use a second-step PCA to estimate β and β⊥. We set the lag of VECM
to 1 for simplicity, and for a lag length larger than 1, we refer the reader to Chapter 6 of Johansen
(1995). Specifically, the PCA*-VECM uses Johansen (1995)’s reduced rank regression method to

estimate a VECM for ĥ∗t :

Step 1: Implement OLS of ĥ∗t and Ĥ∗t−∆ on ĥ∗t−∆ to get residuals ê0,t and ê1,t, respectively.

Step 2: Let Ŝij = n−1
∑n

s=1 êi,s∆ê
ᵀ

j,s∆ for i, j = 0, 1. Then let β̂ = (β̂1, . . . , β̂KG), where β̂l, l =

1, . . . , KG, is the eigenvector belonging to the l-th largest eigenvalue of the matrix (Ŝ11− Ŝ10Ŝ
−1
00 Ŝ01).

Define β̂⊥ as the orthogonal complement matrix of β̂ such that β̂
ᵀ

⊥β̂ = OKF×KG and β̂
ᵀ

⊥β̂⊥ = IKF .
Note that even if the estimated factors are not normalised in Step 1, the residuals ê0,t and ê1,t will

not change and therefore the estimates of β̂⊥ and β̂ will not be affected. Also note that the factors
for efficient prices follow a diffusion model and hence, are heteroskedastic. One can implement more
efficient estimation of VECM under heteroskedasticity (e.g., generalized least squares estimation in
Seo (2007) and Herwartz and Lütkepohl (2011)). But we do not pursue this in our paper.
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4.3. Data generating processes

The data generating process in our simulation is similar to that in Bollerslev et al. (2019). The
observable prices are the sum of efficient prices and microstructure noise. The former has two
orthogonal factors and the latter has one factor.

The two factors in efficient prices are independently generated from a GARCH diffusion model
as in Andersen and Bollerslev (1998),{

fit = σfitdBit,
dσ2

fit = κfi(θfi − σ2
fit)dt+ λfiσ

2
fitdWit,

(4.11)

for i = 1, 2, where Bit and Wit are dependent Brownian motions with corr(Bit,Wit) = −0.5. The
parameters are set as κf1 = κf2 = 0.035, θf1 = 0.636, θf2 = 0.3, λfi =

√
2κfiφfi, φf1 = φf2 =

0.296, and initial value (fi0, σ
2
fi0) = (0, θfi). Then we draw the factor loadings of efficient prices

independently from a normal distribution with mean zero and unit variance.
The idiosyncratic components of efficient prices are generated as Uit = σitW

U
it , where WU

it is a
Brownian motion and σit is generated by three different models for different i.

• For 1 ≤ i ≤ bd/3c, the volatility process is generated by an exponential ARCH diffusion limit
model as in Nelson (1990):

d log(σ2
it) = −0.6(0.157− log(σ2

it))dt+ 0.25dBU
it (4.12)

with initial value log(σ2
i0) = 0.157, where BU

it is a Brownian motion with corr(BU
it ,W

U
it ) = −0.3.

• For bd/3c+ 1 ≤ i ≤ b2d/3c, the volatility process is generated by a GARCH-M diffusion limit
model as in Nelson (1990),

d(σ2
it) = (0.1− σ2

it)dt+ 0.2σ2
itdB

U
it (4.13)

with initial value σ2
i0 = 0.1, where BU

it is a Brownian motion with corr(BU
it ,W

U
it ) = −0.3.

• For b2d/3c+ 1 ≤ i ≤ d, the volatility process is generated by a GARCH diffusion model as in
Andersen and Bollerslev (1998),

d(σ2
it) = 0.035(0.636− σ2

it)dt+ 0.2σ2
itdB

U
it , (4.14)

with initial value σ2
i0 = 0.636, where BU

it is a Brownian motion with corr(BU
it ,W

U
it ) = −0.3.

The two dimensional Brownian motion (BU
it ,W

U
it ) is independent over 1 ≤ i ≤ d and also inde-

pendent with the driving Brownian motions (B1t,W1t) and (B2t,W2t) for factors of efficient prices.
As for microstructure noise, we introduce the noise-to-signal ξ2

G and ξ2
V as in Bollerslev et al.

(2019), which take values n2τ̄G and n2τ̄V , respectively, with τ̄G = −0.4,−0.6 and τ̄V = −0.4,−0.6. The
variance of the factor for microstructure noise satisfies Var(Gt) = 0.5ξ2

G( 1
nd

∑d
i=1

∑n
t=1 σ

4
∗,it)

1/2, and is
thus time-invariant, where σ∗,it is the spot volatility of the efficient price process of asset i at time t.
The variance of idiosyncratic component Vit makes up 0.1ξ2

V of the total variance, that is Var(Vit) =
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0.1ξ2
V ( 1

n

∑n
t=1 σ

4
∗,it)

1/2. We draw the factor Gt independently from a normal distribution with mean
zero and variance Var(Gt), and draw Vit independently from a normal distribution with mean zero
and variance Var(Vit). Finally, we draw the factor loadings, λGi, i = 1, ..., d, of microstructure noise
independently from a normal distribution with mean one and unit variance.

We assume that the prices are synchronously recorded once every one or five minutes during 6.5
trading hours, that is n = 390 or 78. The number of assets is assumed to be d = 50, 100, 300 and
500. We present the simulation results based on 1000 Monte Carlo replications.

4.4. Simulation results

Firstly, we provide simulation results for the estimation of number of factors by the information
criteria described in Section 4.1, as well as by the PANIC test with different significance levels, 1%,
5% and 10%. More specifically, we use Bai and Ng (2002)’s information criterion, IC1, to estimate
the total number of factors and then use the PANIC test to identify the number of factors for
efficient prices. We compare this against Hallin and Lǐska (2007)’s information criteria IC2,i and IC3,i,

i = 1, 2, 3. For the PANIC test in (4.5), K̂H is determined by IC1. We set Q = 10 in both (4.9)
and (4.10), and in Hallin and Lǐska (2007)’s information criteria, we set Bn = 100, ι = 0.5, and
w(x) = 1− |x| (i.e., the Bartlett weight function).

Tables 2 and 3 provide the average number of factors determined by each method (over 1000
replications) for n = 78 and n = 390, respectively. It can be seen that IC1 has excellent performance in
estimating the total number of factors in all scenarios. Other information criteria perform differently.
Notice that in Section 4.1, IC2.i, i = 1, 2, 3, are used to estimate the total number of factors rather
than factors for efficient prices. When τ̄V = −0.6, i.e., when the idiosyncratic error of microstructure
noise is relatively small, the average estimated number of factors by IC2.i, i = 1, 2, 3, is close to 2.
When τ̄V increases to −0.4, this number decreases, especially for IC2.3 when τ̄G = −0.6 (i.e., when the
noise-to-signal ratio is relatively high). Indeed when τ̄G = −0.6 and τ̄V = −0.4, the average number
of factors estimated from IC2.3 falls well below 1. The same pattern applies to IC3.i, i = 1, 2, 3. The
results show that when used to estimate the total number of factors, the criteria IC2.i, i = 1, 2, 3,
underestimate it in all scenarios. But similar to IC3.i, i = 1, 2, 3, they provide a good estimate of the
number of factors for efficient prices when the idiosyncratic error of microstructure noise is relatively
small. However, when the magnitude of the idiosyncratic error for microstructure noise increases,
IC2.3 and IC3.3 seriously underestimate this number. The PANIC tests using the MQ statistic at
different significance levels are denoted as MQ1%, MQ5%, and MQ10% in Tables 2 and 3. They are
used to determine the number of factors for efficient prices and perform satisfactorily in all scenarios,
in particular for MQ1%. In summary, IC1 is very satisfactory in determining the number of total
factors, and the PANIC test with 1% significance level is the most robust method to determine the
number of factors for efficient prices, outperforming IC2.2, which is the best performer among all of
Hallin and Lǐska (2007)’s information criteria.

Next, we compare the estimation of common components in the dual factor model. Our method
is denoted as DPCA*. For the alternative methods discussed in Section 4.2, we denote them as
DPCA and PCA*-VECM, respectively. We use the relative estimation error (REE) to measure the
performance of different methods. It is defined as

REE = ‖M− M̂‖/‖M‖,
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Table 2: Average estimated number of factors and standard deviation (in parentheses) for sampling frequency=5 mins,
true number of factors=2 (efficient prices)+1 (microstructure noise)

IC1 IC2.1 IC2.2 IC2.3 IC3.1 IC3.2 IC3.3 MQ1% MQ5% MQ10%

n = 78, τ̄G = −0.4, τ̄V = −0.4
d=50 3.026 1.910 1.976 1.419 1.874 1.984 1.477 1.998 1.931 1.855

(0.025) (0.082) (0.023) (0.260) (0.110) (0.064) (0.284) (0.030) (0.086) (0.150)
d=100 3.001 1.889 1.956 1.271 1.852 1.921 1.335 1.983 1.931 1.858

(0.001) (0.099) (0.042) (0.224) (0.126) (0.073) (0.287) (0.017) (0.072) (0.134)
d=300 3.000 1.889 1.951 1.183 1.846 1.924 1.195 1.986 1.942 1.871

(0.000) (0.099) (0.047) (0.176) (0.130) (0.070) (0.239) (0.014) (0.059) (0.122)
d=500 3.000 1.888 1.945 1.147 1.853 1.932 1.176 1.988 1.940 1.869

(0.000) (0.100) (0.052) (0.162) (0.126) (0.063) (0.227) (0.012) (0.062) (0.130)
n = 78, τ̄G = −0.6, τ̄V = −0.4

d=50 3.026 1.705 1.914 0.614 1.688 1.898 0.821 2.015 1.939 1.861
(0.025) (0.246) (0.083) (0.445) (0.275) (0.136) (0.535) (0.047) (0.091) (0.156)

d=100 3.001 1.647 1.847 0.277 1.626 1.797 0.492 1.984 1.930 1.858
(0.001) (0.287) (0.140) (0.255) (0.312) (0.182) (0.400) (0.018) (0.073) (0.134)

d=300 3.000 1.650 1.851 0.114 1.602 1.771 0.263 1.987 1.943 1.873
(0.000) (0.308) (0.143) (0.119) (0.344) (0.203) (0.254) (0.013) (0.058) (0.121)

d=500 3.000 1.652 1.834 0.083 1.590 1.788 0.180 1.988 1.939 1.869
(0.000) (0.337) (0.171) (0.086) (0.408) (0.227) (0.178) (0.012) (0.063) (0.130)

n = 78, τ̄G = −0.4, τ̄V = −0.6
d=50 3.001 2.000 2.000 1.983 1.997 2.020 1.955 1.991 1.949 1.884

(0.001) (0.000) (0.000) (0.017) (0.005) (0.024) (0.043) (0.011) (0.056) (0.117)
d=100 3.000 2.000 2.000 1.975 1.998 1.999 1.952 1.986 1.942 1.881

(0.000) (0.000) (0.000) (0.024) (0.002) (0.001) (0.046) (0.014) (0.063) (0.115)
d=300 3.000 2.000 2.000 1.990 2.000 2.000 1.969 1.991 1.951 1.890

(0.000) (0.000) (0.000) (0.010) (0.000) (0.000) (0.030) (0.009) (0.051) (0.108)
d=500 3.000 2.000 2.000 1.990 2.000 2.000 1.974 1.988 1.948 1.887

(0.000) (0.000) (0.000) (0.010) (0.000) (0.000) (0.025) (0.012) (0.055) (0.114)
n = 78, τ̄G = −0.6, τ̄V = −0.6

d=50 3.001 2.000 2.000 1.927 1.989 2.017 1.844 2.008 1.956 1.892
(0.001) (0.000) (0.000) (0.074) (0.013) (0.021) (0.156) (0.028) (0.054) (0.114)

d=100 3.000 1.999 2.000 1.915 1.992 1.996 1.847 1.987 1.945 1.881
(0.000) (0.001) (0.000) (0.086) (0.008) (0.004) (0.152) (0.015) (0.060) (0.115)

d=300 3.000 2.000 2.000 1.951 1.998 1.999 1.909 1.992 1.951 1.890
(0.000) (0.000) (0.000) (0.059) (0.002) (0.001) (0.099) (0.008) (0.051) (0.108)

d=500 3.000 2.000 2.000 1.951 2.000 2.000 1.914 1.988 1.949 1.887
(0.000) (0.000) (0.000) (0.057) (0.000) (0.000) (0.109) (0.012) (0.054) (0.114)
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Table 3: Average estimated number of factors and standard deviation (in parentheses) for sampling frequency=1 min,
true number of factors=2 (efficient prices)+1 (microstructure noise)

IC1 IC2.1 IC2.2 IC2.3 IC3.1 IC3.2 IC3.3 MQ1% MQ5% MQ10%

n = 390, τ̄G = −0.4, τ̄V = −0.4
d=50 3.035 1.907 1.976 1.508 1.860 1.947 1.541 1.989 1.901 1.815

(0.036) (0.084) (0.023) (0.250) (0.123) (0.050) (0.269) (0.027) (0.101) (0.177)
d=100 3.004 1.913 1.964 1.266 1.843 1.913 1.388 1.987 1.917 1.827

(0.004) (0.080) (0.035) (0.195) (0.132) (0.080) (0.264) (0.015) (0.080) (0.165)
d=300 3.000 1.928 1.954 1.133 1.846 1.894 1.246 1.987 1.920 1.850

(0.000) (0.067) (0.044) (0.115) (0.130) (0.095) (0.198) (0.013) (0.080) (0.144)
d=500 3.000 1.924 1.967 1.076 1.846 1.896 1.176 1.988 1.923 1.850

(0.000) (0.070) (0.032) (0.070) (0.130) (0.093) (0.155) (0.012) (0.071) (0.146)
n = 390, τ̄G = −0.6, τ̄V = −0.4

d=50 3.035 1.210 1.645 0.383 1.381 1.684 0.626 1.991 1.909 1.818
(0.036) (0.350) (0.245) (0.253) (0.396) (0.250) (0.415) (0.027) (0.101) (0.175)

d=100 3.004 1.034 1.395 0.081 1.201 1.453 0.317 1.990 1.920 1.827
(0.004) (0.281) (0.291) (0.075) (0.419) (0.358) (0.253) (0.010) (0.078) (0.165)

d=300 3.000 0.847 1.059 0.010 1.002 1.200 0.089 1.989 1.920 1.851
(0.000) (0.292) (0.292) (0.010) (0.450) (0.432) (0.083) (0.011) (0.080) (0.143)

d=500 3.000 0.777 0.955 0.004 0.906 1.049 0.057 1.988 1.923 1.850
(0.000) (0.306) (0.319) (0.004) (0.440) (0.443) (0.054) (0.012) (0.071) (0.146)

n = 390, τ̄G = −0.4, τ̄V = −0.6
d=50 3.000 2.000 2.000 2.000 1.999 1.999 1.991 1.993 1.931 1.847

(0.000) (0.000) (0.000) (0.000) (0.001) (0.001) (0.009) (0.007) (0.072) (0.154)
d=100 3.000 2.000 2.000 2.000 2.000 2.000 1.999 1.991 1.932 1.848

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.009) (0.067) (0.147)
d=300 3.000 2.000 2.000 2.000 2.000 2.000 2.000 1.989 1.926 1.863

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.011) (0.073) (0.132)
d=500 3.000 2.000 2.000 2.000 2.000 2.000 2.000 1.990 1.931 1.860

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.010) (0.064) (0.137)
n = 390, τ̄G = −0.6, τ̄V = −0.6

d=50 3.000 2.000 2.000 1.980 1.986 1.993 1.947 1.995 1.935 1.852
(0.000) (0.000) (0.000) (0.022) (0.014) (0.007) (0.052) (0.007) (0.071) (0.150)

d=100 3.000 2.000 2.000 1.996 1.998 1.999 1.961 1.991 1.935 1.849
(0.000) (0.000) (0.000) (0.004) (0.002) (0.001) (0.038) (0.009) (0.065) (0.146)

d=300 3.000 2.000 2.000 2.000 2.000 2.000 1.986 1.990 1.927 1.863
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.014) (0.010) (0.072) (0.132)

d=500 3.000 2.000 2.000 2.000 2.000 2.000 1.995 1.989 1.931 1.861
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.005) (0.011) (0.064) (0.136)
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where ‖ · ‖ can be the Frobenius norm, the max norm or the spectral norm, and M̂ is an estimate
of the matrix M, which varies from place to place (depending on the quantity being estimated).
In Tables 4–7, “diff.total” refers to the total common component, hΛ

ᵀ

H . “EP” and “diff.EP” refer
to the common components for efficient prices and efficient returns. That is, EP = FΛ

ᵀ

F and
diff.EP = fΛ

ᵀ

F , respectively. Similarly, “MN” and “diff.MN” refer to the common components for
microstructure noise and its first difference, i.e., MN = GΛ

ᵀ

G and diff.MN = gΛ
ᵀ

G, respectively. In
the following study, we will only consider the cases τ̄G = τ̄V = −0.6 and τ̄G = τ̄V = −0.4. To focus
on the comparison of different methods in estimating the common components, we assume that the
true numbers of factors for efficient prices and microstructure noise are known. Otherwise, one can
obtain correct estimates of the numbers of factors by IC1 and the PANIC test in most cases (as can
be seen from Tables 2 and 3).

Table 4 gives the simulation results when n = 78, τ̄G = −0.6, τ̄V = −0.6. In this case, the
microstructure noise is smaller than the efficient returns in magnitude. We can see that the REE in
all columns decreases when d increases. The estimates of the total common component, hΛ

ᵀ

H , are
the same for all the three methods, and the corresponding REE values are listed in the “diff.total”
column. Since the estimates of fΛ

ᵀ

F and gΛ
ᵀ

G are decomposed from the estimate of hΛ
ᵀ

H , the
“diff.EP” and “diff.MN” have larger REEs than “diff.total” for all the three methods. Overall,
DPCA* performs the best.

Table 5 presents the simulation results when n = 78, τ̄G = −0.4, τ̄V = −0.4. In this case, the
microstructure noise is larger than the efficient returns in magnitude. Similar to Table 4, the REEs
decrease when d increases. DPCA* performs the best, while DPCA performs the poorest. This may
be due to the fact that DPCA* normalises the factors in the first step PCA, while DPCA does not.
When the magnitude of the factors for microstructure noise, DGgt, is larger than that of the factors
for efficient returns, ft, the magnitude of the cumulated factors for microstructure noise, DGGt, can
still be larger than that of the factors for efficient prices, Ft, and therefore, the factors corresponding
to the leading eigenvalues in the second-step PCA may come from the microstructure noise.

Table 6 gives the simulation results when n = 390, τ̄G = −0.6, and τ̄V = −0.6. When we increase
the sample size from 78 to 390, the REEs are smaller for “diff.total”, “diff.EP”, “diff.MN”, and “EP”.
However, all three methods have larger REEs for “MN”. When d = 50, the REEs are even larger
than 1, but they eventually decay when d becomes larger. Table 7 provides the simulation results
when n = 390, τ̄G = −0.4, and τ̄V = −0.4. The pattern is similar to that in Table 5, i.e., DPCA*
outperforms DPCA and PCA*-VECM.

5. Application

We now apply the proposed method to 1-min and 5-min intraday returns of S&P 500 Index
constituents (505 stocks in total). The data were collected from Thomson Reuters Eikon database
and cover a period from 29 March 2021 to 30 June 2021. For each day, the observed prices constitute
an (n + 1)-by-d matrix, X, with n ≤ 78 (for 5-min returns) or n ≤ 390 (for 1-min returns) and
d ≤ 505. The value of n (i.e., the number of observations) and d (i.e., the number of stocks) may
vary from day to day due to contemporaneous missing values at a time or suspension of trading in
one day. For asynchronous missing data, we fill them using Next Observation Carried Backwards
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(NOCB) if the missing data are at the beginning of the series, Last Observation Carried Forward
(LOCF) if they are at the end of the series, and linear interpolation otherwise.

Firstly, we determine the number of factors using IC1 and the PANIC tests for each of the 66
trading days within the sampling period. Figure 1 illustrates that the estimated number of factors
varies from day to day. Table 8 shows some summary statistics for the estimated numbers of factors.
The PANIC tests with different significance levels give similar estimates of the numbers of factors
for microstructure noise and efficient prices in each day, with a difference less than 1.5 on average.
Since the PANIC test at 1% performs best in the simulation, it will be used as the default PANIC
test hereafter, unless specifically stated otherwise.

Table 8: Summary statistics for estimated numbers of factors over the sampling period

1-min data
mean median 1st quartile 3rd quartile min max s.d.

KH (IC1) 13.045 13 12 14 8 17 1.818
KF (PANIC 1%) 8.894 9 8 10 4 12 1.590
KF (PANIC 5%) 8.106 8 7 9 4 12 1.656
KF (PANIC 10%) 7.561 8 6 9 3 12 1.890
KG (PANIC 1%) 4.152 4 3 5 1 8 1.552
KG (PANIC 5%) 4.939 5 4 6 2 9 1.626
KG (PANIC 10%) 5.485 5 4 6.75 2 10 1.629

5-min data
mean median 1st quartile 3rd quartile min max s.d.

KH (IC1) 7.697 8 7 8.75 5 12 1.488
KF (PANIC 1%) 6.758 7 6 8 3 12 1.710
KF (PANIC 5%) 6.076 6 5 7 2 12 1.892
KF (PANIC 10% 5.500 5 4 7 2 10 1.774
KG (PANIC 1%) 0.939 1 0 2 0 3 0.990
KG (PANIC 5%) 1.621 2 0 2 0 5 1.274
KG (PANIC 10%) 2.197 2 2 3 0 6 1.268

We can see from Table 8 that the numbers of factors are larger for 1-min data than those for
5-min data. The reason might be twofold. Firstly, the magnitude of microstructure noise decreases
when 1-min data are aggregated to 5-min data. Thus the factors for microstructure noise are more
difficult to detect. Secondly, due to the Epps effect (as evident in Table 10), the correlation between
stocks decreases as the sampling frequency increases, resulting in higher numbers of factors for both
microstructure noise and efficient prices of higher frequency data.

To see how the number of factors change during the sample period, we looked at whether there
is a relation between the number of factors and the following variables: the market excess return
(MKT), the size factor (SMB), the value factor (HML), the Momentum factor (MOM), the short-
term Reversal factor (STREV), the long-term Reversal factor (LTREV), the CBOE Volatility Index
(VIX), the high low volatility on the S&P500 index (HLVOL) and the implied Roll measure of bid-ask

spread (ROLL, computed as 2
√
−
[
Cov(rt, rt−1) ∧ 0

]
using 5-min price changes rt and averaged over
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all stocks with equal weight). The first 6 risk factors were downloaded from Kenneth R. French’s data
library2 and the VIX and S&P500 index were downloaded from Thomson Reuters Eikon database.

We find from Table 9 that the contemporaneous correlations between the number of factors and
the above-mentioned risk variables are insignificant. However, some of these variables can partially
explain changes in the number of factors for efficient prices in the next day. Specifically, the highest
(in absolute value) correlation is between lag-1 SMB and 1-min KF , which is 0.329 with a p-value
of 0.007. Significant correlations are also found, at 10% significant level, between 1-min KF and
HLVOL at -0.240, between 1-min KF and MOM at 0.211, and between 1-min KF and LTREV at
0.213. What’s more, we also find a negative relation between the number of factors and VIX (or
HLVOL). Figure 2 shows this relation in a time series plot: when the S&P500 high-low volatility
peaks on 12 May 2021, the 1-min KH and 1-min KF drop in the next day. This indicates that the
co-movement of stocks increases during High VIX (or HLVOL) period, confirming the old adage that
diversification disappears when needed most.

Table 9: Correlation between number of factors and 9 risk variables. Panel A shows the contemporaneous correlation
and Panel B shows the lagged correlation (the 9 risk variables are lagged by 1 day). P-value less than 0.1, 0.05 or 0.01
is flagged with one, two or three stars (*, **, ***), respectively.

(Panel A) VIX HLVOL MKT SMB HML MOM STREV LTREV ROLL
KH(1-min) −0.193 −0.121 0.043 0.185 −0.038 0.178 0.141 0.153 −0.034
KF (1-min) −0.134 −0.033 0.004 0.159 −0.054 0.065 −0.010 0.094 −0.113
KG(1-min) −0.089 −0.108 0.047 0.055 0.010 0.142 0.175 0.083 0.075
KH(5-min) −0.008 0.123 0.042 0.107 0.115 0.086 0.090 0.205 0.083
KF (5-min) −0.010 0.093 0.009 0.004 −0.061 −0.011 −0.051 −0.005 0.010
KG(5-min) 0.004 0.025 0.048 0.155 0.279 0.149 0.223 0.317 0.106
(Panel B) VIX HLVOL MKT SMB HML MOM STREV LTREV ROLL
KH(1-min) −0.206∗ −0.191 0.157 0.292∗∗ 0.129 0.231∗ −0.184 0.254∗∗ −0.132
KF (1-min) −0.131 −0.240∗ 0.144 0.329∗∗∗ 0.050 0.211∗ −0.027 0.213∗ 0.005
KG(1-min) −0.105 0.023 0.036 0.002 0.099 0.052 −0.187 0.078 −0.159
KH(5-min) 0.003 −0.088 0.110 0.026 0.041 −0.084 −0.072 −0.006 0.033
KF (5-min) −0.013 −0.076 0.183 −0.019 0.055 −0.085 −0.150 −0.032 −0.056
KG(5-min) 0.027 −0.003 −0.146 0.071 −0.032 0.019 0.146 0.046 0.144

For illustration purposes, we consider the results for 30 June 2021, i.e., the last day in the sample
period. For 1-min data, the estimated total number of factors is 13, among which 6 are identified as
factors for efficient prices by the PANIC test. Figure 3 shows the 13 estimated factors in cumulative

form, i.e.,
(
β̂⊥, β̂

)ᵀ
Ĥ∗s∆, where

(
β̂⊥, β̂

)
is the matrix of eigenvectors of the matrix n−1Ĥ∗cᵀĤ∗c,

arranged in descending order of their corresponding eigenvalues. The first 6 factors appear to be
more variable than the last 7 factors.

We can not tell from Figure 3 whether the factors for microstructure noise dominate those for
efficient prices, as estimated factors have been standardised. Instead, we calculate the variance ratio

2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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Table 10: Summary statistics for pairwise correlations between stock returns on 30 June 2021

Correlation
mean median 1st quartile 3rd quartile min max s.d.

1-min 0.083 0.075 -0.025 0.179 -0.471 0.925 0.160
5-min 0.097 0.097 -0.062 0.253 -0.674 0.960 0.229

Absolute value of correlation
mean median 1st quartile 3rd quartile min max s.d.

1-min 0.139 0.112 0.053 0.195 0.000 0.925 0.114
5-min 0.200 0.171 0.082 0.288 0.000 0.960 0.148

Table 11: Summary statistics for the variance ratio of the common component for microstructure noise to that of

efficient price for each stock on 30 June 2021. Note that we define both variance ratio based on V̂ar(λ̂
∗ᵀ

Fif̂
∗
s∆), as the

variance V̂ar(λ̂
∗ᵀ

FiF̂
∗
s∆) is not meaningful.

Variance ratio of common components: V̂ar(λ̂
∗ᵀ

GiĜ
∗
s∆)/V̂ar(λ̂

∗ᵀ

Fif̂
∗
s∆)

mean median 1st quartile 3rd quartile min max s.d.
1-min 4.116 2.541 1.302 5.451 0.030 48.788 4.875
5-min 0.148 0.048 0.013 0.138 0.000 4.228 0.325

Variance ratio of differenced common components: V̂ar(λ̂
∗ᵀ

Giĝ
∗
s∆)/V̂ar(λ̂

∗ᵀ

Fif̂
∗
s∆)

mean median 1st quartile 3rd quartile min max s.d.
1-min 2.633 1.604 0.812 3.492 0.017 35.849 3.229
5-min 0.069 0.020 0.006 0.062 0.000 2.209 0.156

of the common component for microstructure noise to that of efficient price for each stock, to take
the magnitude of factor loadings into consideration. We give the summary statistics in Table 11. We
can see that on average, the common component for microstructure noise dominates the common
component for efficient prices at 1-min frequency, while the relation reverses at 5-min frequency.
For individual stocks, however, the contribution of the common component for microstructure noise
may still be small even at the 1-min frequency. To show this, we look at the decomposition of
prices (cumulative returns) into three components: the common component of efficient prices, ΛFFt

(CC.EP), the common component of microstructure noise, ΛGDGGt (CC.MN), and idiosyncratic
errors (Residuals). We illustrate with five randomly selected stocks that have the stock ticker symbols
– POOL, CHRW, AJG, CNP, and WM. Figure 4 shows the decomposition for the cumulative 1-min
returns of the five stocks on 30 June 2021. The corresponding numbers of factors are K̂F = 6 and
K̂G = 7. Figure 5 shows the decomposition for 5-min data with K̂F = 5 and K̂G = 1. The two figures
show that the common component of the microstructure noise can explain only a small amount of
the variability of the prices.

In summary, our analysis finds existence of common components for the microstructure noise of
S&P 500 stocks, although their magnitude is small. The small magnitude is also consistent with the
expectation that there are very few arbitrage opportunities in a frictional market.
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Figure 1: Estimated number of factors for each trading day from 29 March 2021 to 30 June 2021. The y-axis represents
the number of factors and the x-axis represents the dates (given in the format mmdd). The y-coordinate of the top

of each grey bar gives the estimated total number of factors, K̂H , from IC1. The length of each grey bar represents
the difference between K̂H and K̂F , which is obtained from the PANIC test using 1% significance level. The length
of each red bar represents the difference between K̂F ’s obtained from the PANIC tests using 1% and 5% significance
levels. The length of each blue bar represents the difference between K̂F ’s obtained from the PANIC tests using 5%
and 10% significance levels. The y-coordinate of the bottom of each blue bar gives the value of K̂F obtained from a
10% PANIC test.
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Figure 2: Time series plots of KH(1-min) and KF (1-min), VIX, and HLVOL over the sampling period
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Figure 3: Plot of the 13 cumulative factors estimated from the DPCA*, i.e., plot of the 13 components of
(
β̂⊥, β̂

)ᵀ
Ĥ∗s∆,

s = 1, . . . , 376, for 1-min data on 30 June 2021
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iĜ
∗ s
∆

)/
V̂

a
r(
λ̂
∗ᵀ F
if̂
∗ s
∆

)
fo

r
ea

ch
st

o
ck

is
0
.4

62
,

0
.9

8
0
,

0
.1

2
5
,

1
.2

8
2
,

a
n
d

6
.8

1
8
,

re
sp

ec
ti

ve
ly

.

33



F
ig

u
re

5:
D

ec
om

p
os

it
io

n
of

cu
m

u
la

ti
ve

5-
m

in
re

tu
rn

s
o
n

3
0

J
u

n
e

2
0
2
1

in
to

th
e

co
m

m
o
n

co
m

p
o
n

en
ts

o
f

effi
ci

en
t

p
ri

ce
s

(C
C

.E
P

),
th

e
co

m
m

o
n

co
m

p
on

en
ts

of
m

ic
ro

st
ru

ct
u

re
n
oi

se
(C

C
.M

N
),

a
n
d

th
e

id
io

sy
n

cr
a
ti

c
er

ro
rs

(R
es

id
u

a
ls

)
fo

r
th

e
st

o
ck

s
P

O
O

L
,

C
H

R
W

,
A

J
G

,
C

N
P

,
a
n

d
W

M
,

w
it

h
K̂

F
=

5
an

d
K̂

G
=

1.
E

ac
h

ro
w

gi
ve

s
th

e
d

ec
o
m

p
o
si

ti
o
n

fo
r

ea
ch

st
o
ck

,
w

it
h

th
e

fi
rs

t
d

ia
g
ra

m
g
iv

in
g

th
e

cu
m

u
la

ti
ve

re
tu

rn
s,

fo
ll

ow
ed

b
y

C
C

.E
P

,
C

C
.M

N
,

an
d

R
es

id
u

al
s.

T
h

e
va

ri
a
n

ce
ra

ti
o

V̂
a
r(
λ̂
∗ᵀ G
iĜ
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6. Conclusion and Future Work

We consider a dual-factor model for high-frequency stock prices contaminated with microstructure
noise. We develop the Double Principle Component Analysis (DPCA*) to estimate the separate
factor structures for efficient prices and microstructure noise. When comparing with the PCA-VECM
approach, the DPCA* approach is free from the need to impose strong parametric assumptions on
the microstructure noise and applies instead to a broad class of stationary processes. The estimators
are proven to be consistent and perform well in simulations. The empirical analysis of intraday
returns of S&P 500 constituents provides some evidence of co-movement in the microstructure noise,
apart from co-movement of prices caused by common systematic risk factors.

Identifying and separating out common components of microstructure noise from the prices are
very useful for the study of properties of the microstructure noise and efficient price processes. For
example, once the common components for microstructure noise are separated out, the common
components for efficient prices are no longer contaminated by microstructure noise and hence, can
be used to obtain a more accurate estimate of the common part of realized volatility. For the
idiosyncratic part of realized volatility, one can use the estimated idiosyncratic errors and apply the
pre-averaging method of Jacod et al. (2009). Adding these two parts together, we get an estimator
of the realized volatility matrix. We may introduce sparsity or block structure into idiosyncratic
components like Dai et al. (2019) and Aı̈t-Sahalia and Xiu (2017), respectively. However, since our
main interests are the identification of common factors, we avoid introducing these structures and
leave the estimation of the realized volatility matrix to the future work.

The estimated common factors and loadings for microstructure noise provide useful tools for
portfolio management. With such estimates, portfolio managers can construct a new factor mimicking
portfolio which is only exposed to the factors of microstructure noise. Such a portfolio can be used to
hedge risks from microstructure noise. Since the portfolio return is usually stationary, one can apply
the mean-reverting strategy to earn profits from the portfolio, once its volatility is large enough to
cover the cost. Even if its volatility is small, one can still time the market according to it, e.g., when
adjusting the position of a portfolio, to lower the cost.
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Appendix A: Technical Proofs

In the subsequent proofs, we often make use of the following Weyl’s inequality, for two n × n
symmetric matrices M1 and M2, with eigenvalues µj(M1) and µj(M2):

|µj(M1)− µj(M2)| ≤ ‖M1 −M2‖sp, (A.1)

for j = 1, ..., n. If M1 and M2 are invertible and ‖M1 −M2‖sp‖M−1
2 ‖sp < 1, we have

‖M−1
1 −M−1

2 ‖sp ≤ ‖M−1
1 ‖sp‖M1 −M2‖sp‖M−1

2 ‖sp
≤ ‖M−1

1 −M−1
2 ‖sp‖M1 −M2‖sp‖M−1

2 ‖sp + ‖M−1
2 ‖sp‖M1 −M2‖sp‖M−1

2 ‖sp

≤ ‖M
−1
2 ‖sp‖M1 −M2‖sp‖M−1

2 ‖sp
1− ‖M1 −M2‖sp‖M−1

2 ‖sp
. (A.2)

Note that the max norm is not submultiplicative, but we can use ‖M1M2‖MAX ≤ ‖M1‖∞‖M2‖MAX

or ‖M1M2‖MAX ≤ ‖M1‖MAX‖M2‖1.

Lemma A.1. Under Assumptions 1–4, 5*, 6 and 7, we have, for each 1 ≤ j ≤ KH ,
(i) ∣∣∣∣ξj − bj

‖bj‖2

∣∣∣∣ = O

(
mU,d + n2τ̄∗Vmv,d

dn2τ∗−G

)
, (A.3)

where ξj is the eigenvector of ΛHDHΣhDHΛ
ᵀ

H corresponding to the jth largest eigenvalue.

(ii) If, in addition, Assumption 8(i) holds, then µKH (x
ᵀ
x) ≥ Cdn2τ∗−G .
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Proof. Recall that
Σx = ΛHDHΣhDHΛ

ᵀ

H + Σw.

Let B = ΛHDHΣ
1/2
h Q = (b1, · · · , bKH ) with ‖bj‖2’s sorted in a descending order, where Q is an

orthogonal matrix such that Q
ᵀ
Σ

1/2
h DHΛ

ᵀ

HΛHDHΣ
1/2
h Q is a diagonal matrix. Then ‖bj‖2

2, 1 ≤ j ≤
KH , are the non-zero eigenvalues of BB

ᵀ
= ΛHDHΣhDHΛ

ᵀ

H and also the eigenvalues of B
ᵀ
B =

Σ
1/2
h DHΛ

ᵀ

HΛHDHΣ
1/2
h . Therefore,

‖bj‖2
2 ≤ ‖b1‖2

2 = ‖Σ1/2
h DHΛ

ᵀ

HΛHDHΣ
1/2
h ‖sp ≤ ‖DH‖2

sp‖Σh‖sp · ‖Λ
ᵀ

HΛH‖sp = O(dn2τ̄∗+G ),

where the last equality holds by Assumptions 2 and 4. On the other hand,

‖bKH‖2
2 = µKH (Σ

1/2
h DHΛ

ᵀ

HΛHDHΣ
1/2
h )

≥ µKH (Σh)µ
2
KH

(DH)µKH (Λ
ᵀ

HΛH) ≥ Cdn2τ∗−G . (A.4)

By the Sin theta theorem in Davis and Kahan (1970) (see Yu et al. (2015) for a statistician-friendly
version), we have ∣∣∣∣ξj − bj

‖bj‖2

∣∣∣∣ ≤ √
2‖Σw‖sp

min {|µj−1(Σx)− ‖bj‖2
2| , |µj+1(Σx)− ‖bj‖2

2|}
, (A.5)

with the convention µ0(·) =∞. By Weyl’s inequality and triangle inequality, we have

|µj(Σx)− ‖bj‖2
2| ≤ ‖Σw‖sp = O(mw,nd), (A.6)

for 1 ≤ j ≤ KH and
0 < µj(Σx) ≤ ‖Σw‖sp = O(mw,nd),

for KH + 1 ≤ j ≤ d, where mw,nd = mU,d + n2τ̄∗Vmv,d. Using the triangle inequality, (A.6) and
Assumption 7, we have∣∣µj−1(Σx)− ‖bj‖2

2

∣∣ ≥ ∣∣‖bj−1‖2
2 − ‖bj‖2

2

∣∣− ∣∣µj−1(Σx)− ‖bj−1‖2
2

∣∣
≥ Cdn2τ∗−G ,

for 1 ≤ j ≤ KH , as mw,nd = o(dn2τ∗−G ) under Assumption 5*. Similarly, |µj+1(Σx)− ‖bj‖2
2| ≥

Cdn2τ∗−G , when 1 ≤ j ≤ KH − 1. Therefore, by (A.5), we can prove (i).For part (ii), by Weyl’s

inequality,
|µKH (x

ᵀ
x)− µKH (Σx)| ≤ ‖x

ᵀ
x−Σx‖sp.

Then using µKH (Σx) ≥ ‖bKH‖2
2, we have

µKH (x
ᵀ
x) ≥ µKH (Σx)− ‖x

ᵀ
x−Σx‖sp

≥ ‖bKH‖2
2 − ‖x

ᵀ
x−ΛHDHh

ᵀ
hDHΛ

ᵀ

H‖sp − ‖Σw‖sp,
−‖ΛHDHh

ᵀ
hDHΛ

ᵀ

H −ΛHDHΣhDHΛ
ᵀ

H‖sp
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where Σw = ΣU + nDV ΣvDV . Therefore by (A.4), (A.6) and Assumption 5*, we only need to show
that

‖xᵀ
x−ΛHDHh

ᵀ
hDHΛ

ᵀ

H‖sp = oP (dn2τ∗−G ), (A.7)

and
‖ΛHDHh

ᵀ
hDHΛ

ᵀ

H −ΛHDHΣhDHΛ
ᵀ

H‖sp = oP (dn2τ∗−G ). (A.8)

As for (A.7), using Lemma B.4, we have

‖xᵀ
x−ΛHDHh

ᵀ
hDHΛ

ᵀ

H‖sp ≤ 2‖ΛH‖sp‖DHh
ᵀ
w‖sp + ‖wᵀ

w −Σw‖sp + ‖Σw‖sp
= OP (d(log d/n)1/2 · nτ̄

∗+
V +τ̄∗+G )

+OP (d(log d/n)1/2 · n2τ̄∗+V ) +O(mw,nd), (A.9)

since ‖ΛH‖sp = O(d1/2), ‖DHh
ᵀ
w‖sp ≤ d1/2‖DHh

ᵀ
w‖1 and ‖wᵀ

w − Σw‖sp ≤ d‖wᵀ
w − Σw‖MAX.

Then, under Assumptions 5* and 8(i),

‖xᵀ
x−ΛHDHh

ᵀ
hDHΛ

ᵀ

H‖sp = oP (dn2τ∗−G ),

if n1+4τ∗−G −2τ̄∗+V −2(τ̄∗+G ∨τ̄
∗+
V )/(log d) → ∞ and mw,nd = o(dn2τ∗−G ). As for (A.8), by Assumptions 4 and

8(i), we have

‖ΛHDHh
ᵀ
hDHΛ

ᵀ

H −ΛHDHΣhDHΛ
ᵀ

H‖sp
≤ CΛd‖DHh

ᵀ
hDH −DHΣhDH‖sp

≤ KHCΛd ·max
{
‖fᵀ

f −ΣF‖MAX, ‖DGg
ᵀ
gDG −DGΣgDG‖MAX, ‖f

ᵀ
gDG‖MAX

}
= OP (dn2τ̄∗+G (log d/n)1/2) = oP (dn2τ∗−G ).

where the last line follows from Lemmas B.1(ii), B.2(ii) and B.3(iv). Hence we complete the proof.

Lemma A.2. Suppose that Assumptions 1–8 are satisfied. We have
(i) ∥∥∥Λ̂H −ΛHDHR

∥∥∥
MAX

= OP

(
n−2τ∗−G · and

)
= oP (1), (A.10)

where

and = (log d)1/2n
τ̄∗+V +τ̄∗+G ∨τ̄

∗+
V

n1/2
+
mw,nd

d1/2
,

in which τ̄ ∗+G = (1/2 + τ̄G)+, τ ∗−G = (1/2 + τG)−, τ̄ ∗+V = (1/2 + τ̄V )+, mw,nd = mU,d + n2τ̄∗Vmv,d, and
τ̄ ∗V = (1/2 + τ̄V ).
(ii)

‖DHR‖sp = OP (1), ‖(DHR)−1‖sp = OP (1), (A.11)

and
d−1/2‖RD̂

1/2
x,KH
‖sp = OP (1). (A.12)
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(iii) ∥∥∥ĥᵀ − (DHR)−1DHh
ᵀ
∥∥∥
MAX
≤
∥∥∥ĥᵀ − (DHR)−1DHh

ᵀ
∥∥∥
sp

= OP

(
n−τ

∗−
G · and

)
, (A.13)

where the rotation matrix R is defined as

R = h
ᵀ
hDHΛ

ᵀ

HΛ̂HD̂−1
x,KH

, (A.14)

in which D̂x,KH is a KH ×KH diagonal matrix with the diagonal elements being the first KH largest
eigenvalues of x

ᵀ
x arranged in descending order.

Proof of Lemma A.2. By the definition of PCA estimation, we may show that(
Λ̂H −ΛHDHR

)
D̂x,KH = (x

ᵀ
x−ΛHDHh

ᵀ
hDHΛ

ᵀ

H)Λ̂H

= ΛHDHh
ᵀ
wΛ̂H + w

ᵀ
hDHΛ

ᵀ

HΛ̂H

+ (w
ᵀ
w −Σw)Λ̂H + ΣwΛ̂H .

For the first term on the right hand side of the second equality, we have, by similar argument to
(A.9),

‖xᵀ
x−ΛHDHh

ᵀ
hDHΛ

ᵀ

H‖MAX ≤ 2‖ΛH‖MAX‖DHh
ᵀ
w‖1 + ‖wᵀ

w −Σw‖MAX + ‖Σw‖MAX

= OP ((log d/n)1/2 · nτ̄
∗+
V +τ̄∗+G )

+OP ((log d/n)1/2 · n2τ̄∗+V ) +O(mw,nd).

For the remaining terms, we have

‖ΛHDHh
ᵀ
wΛ̂H‖MAX ≤ ‖ΛH‖MAX‖DHh

ᵀ
w‖1‖Λ̂H‖1 = OP (d(log d/n)1/2 · nτ̄

∗+
V +τ̄∗+G ),

‖wᵀ
hDHΛ

ᵀ

HΛ̂H‖MAX ≤ ‖w
ᵀ
hDH‖MAX‖Λ

ᵀ

H‖1‖Λ̂H‖1 = OP (d(log d/n)1/2 · nτ̄
∗+
V +τ̄∗+G ),

‖(wᵀ
w −Σw)Λ̂H‖MAX ≤ ‖w

ᵀ
w −Σw‖MAX‖Λ̂H‖1 = OP (d(log d/n)1/2 · n2τ̄∗+V ),

and
‖ΣwΛ̂H‖MAX ≤ ‖Σw‖∞‖Λ̂H‖MAX = OP (d1/2mw,nd),

since ‖ΛH‖MAX = O(1),
∥∥hᵀ

w
∥∥

1
≤ KH

∥∥hᵀ
w
∥∥
MAX

= OP

(
(log d/n)1/2 · nτ̄∗+V +τ̄∗+G

)
by Lemma B.4,

‖Λ̂H‖1 ≤ d1/2‖Λ̂H‖F = dKH , and ‖Λ̂H‖MAX ≤ ‖Λ̂H‖F = d1/2KH . Therefore∥∥∥(Λ̂H −ΛHDHR
)

D̂x,KH

∥∥∥
MAX

= OP

(
d(log d/n)1/2 · nτ̄

∗+
V +τ̄∗+G ∨τ̄

∗+
V + d1/2mw,nd

)
= OP (d · and).

(A.15)

Since ‖D̂−1
x,KH
‖sp = OP (d−1n−2τ∗−G ) by Lemma A.1(ii), we can prove the result by noting that

n−2τ∗−G · and = oP (1)
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when n1+4τ∗−G −2τ̄∗+V −2(τ̄∗+G ∨τ̄
∗+
V )/(log d)→∞ and mw,nd/(d

1/2n2τ∗−G )→ 0.

For part (ii), noting that

d−1Λ̂
ᵀ

HΛ̂H = IKH and
∥∥∥ΛHDHR− Λ̂H

∥∥∥
sp
≤ (dKH)1/2

∥∥∥ΛHDHR− Λ̂H

∥∥∥
MAX

,

we have

‖d−1R
ᵀ
DHΛ

ᵀ

HΛHDHR− IKH‖sp = d−1‖Rᵀ
DHΛ

ᵀ

HΛHDHR− Λ̂
ᵀ

HΛ̂H‖sp
≤ 2d−1‖Λ̂H‖sp‖ΛHDHR− Λ̂H‖sp + d−1‖ΛHDHR− Λ̂H‖2

sp

= OP (n−2τ∗−G · and) = oP (1). (A.16)

Then, by triangle inequality, we have |‖(d−1R
ᵀ
DHΛ

ᵀ

HΛHDHR)‖sp − 1| = oP (1). Since

‖d−1R
ᵀ
DHΛ

ᵀ

HΛHDHR‖sp‖(DHRR
ᵀ
DH)−1‖sp ≥ ‖Λ

ᵀ

HΛH/d‖sp, (A.17)

by Assumption 4, we have ‖(DHRR
ᵀ
DH)−1‖sp = ‖(DHR)−1‖2

sp = OP (1).
One the other hand, by (A.2) and (A.16),

‖(DHR)−1(
Λ

ᵀ

HΛH

d
)−1(R

ᵀ
DH)−1 − IKH‖sp ≤

‖d−1R
ᵀ
DHΛ

ᵀ

HΛHDHR− IKH‖sp
1− ‖d−1RᵀDHΛ

ᵀ

HΛHDHR− IKH‖sp
= oP (1).

Then following the same argument as in (A.17), we can prove ‖DHR‖sp = OP (1).

As for (A.12), since R
ᵀ
(h

ᵀ
h)−1RD̂x,KH = R

ᵀ
DHΛ

ᵀ

HΛ̂H , by (A.10) and (A.16), we have

‖d−1D̂
1/2
x,KH

R
ᵀ
(h

ᵀ
h)−1RD̂

1/2
x,KH

− IKH‖sp
= ‖d−1R

ᵀ
(h

ᵀ
h)−1RD̂x,KH − IKH‖sp

≤ ‖d−1R
ᵀ
DHΛ

ᵀ

HΛHDHR− IKH‖sp + d−1‖Rᵀ
DHΛ

ᵀ

H‖sp‖Λ̂H −ΛHDHR‖sp
= OP (n−2τ∗−G · and) = oP (1).

Then by Lemmas B.1 and B.2, we can prove ‖hᵀ
h‖sp = OP (1), and therefore we have (A.12).

For part (iii), we use the following decomposition

ĥ
ᵀ −R−1h

ᵀ
= d−1Λ̂

ᵀ

H

(
ΛHDHR− Λ̂H

)
R−1h

ᵀ − d−1
(
ΛHDHR− Λ̂H

)ᵀ

w
ᵀ

+ d−1R
ᵀ
DHΛ

ᵀ

Hw
ᵀ
.

(A.18)
For the first term on the right hand side (RHS) of (A.18), we have

‖Λ̂
ᵀ

H

(
ΛHDHR− Λ̂H

)
R−1h

ᵀ‖sp

≤ ‖Λ̂
ᵀ

H‖
∥∥∥(ΛHDHR− Λ̂H

)
D̂x,KH

∥∥∥
sp

∥∥∥D̂−1/2
x,KH

∥∥∥
sp

∥∥∥(RD̂
1/2
x,KH

)−1
∥∥∥
sp
‖hᵀ‖sp

= OP (d1/2) ·OP (d · and) ·OP (d−1/2n−τ
∗−
G ) ·OP (1) ·OP (1)

= OP (dn−τ
∗−
G and). (A.19)
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For the second term on the RHS of (A.18), when n1+4τ∗−G −4τ̄∗+V / log d→∞, we have∥∥∥∥(ΛHDHR− Λ̂H

)ᵀ

w

∥∥∥∥
sp

≤
∥∥∥ΛHDHR− Λ̂H

∥∥∥
sp
‖w‖sp

= OP (d1/2n−2τ∗−G and) ·OP (d1/2(log d/n)1/4 · nτ̄
∗+
V +m

1/2
w,nd)

= OP (dn−τ
∗−
G and) ·OP (n−τ

∗−
G (log d/n)1/4 · nτ̄

∗+
V +m

1/2
w,ndd

−1/2)

= oP (dn−τ
∗−
G and). (A.20)

For the last term on the RHS of (A.18), by Lemma B.4(v), we have

d−1‖Rᵀ
DHΛ

ᵀ

Hw
ᵀ‖sp ≤ d−1‖Rᵀ

DH‖sp‖Λ
ᵀ

Hw
ᵀ‖sp

= d−1 ·OP (1) ·OP

(
d1/2(log d/n)1/4 · nτ̄

∗+
V m

1/2
w,nd + d1/2m

1/2
w,nd

)
= oP (n−τ

∗−
G and), (A.21)

when d−1/2(log d/n)1/4·nτ̄∗+V m
1/2
w,nd = o((log d/n)1/2·nτ̄∗+V +τ̄∗+G ∨τ̄

∗+
V −τ

∗−
G ), or equivalently, n1−4(τ̄∗+G ∨τ̄

∗+
V )+4τ∗−G =

o(d2 log d/m2
w,nd). Combing (A.19)–(A.21), we have ‖ĥᵀ − R−1h

ᵀ‖sp = OP (n−τ
∗−
G and), which com-

pletes the proof of Lemma A.2. 2

Proof of Theorem 3.1. (i) Note that ĥ∗ = ĥ(ĥ
ᵀ
ĥ)−1/2 = d1/2ĥD̂

−1/2
x,KH

and

(R∗)−1 = d1/2D̂
−1/2
x,KH

R−1(h
ᵀ
h)1/2. (A.22)

By Lemma A.2(iii), we have∥∥∥ĥ∗ᵀ − (R∗)−1(h
ᵀ
h)−1/2h

ᵀ
∥∥∥
MAX

=
∥∥∥ĥ∗ᵀ − d1/2D̂

−1/2
x,KH

R−1(h
ᵀ
h)1/2(h

ᵀ
h)−1/2h

ᵀ
∥∥∥
MAX

=
∥∥∥ĥ∗ᵀ − d1/2D̂

−1/2
x,KH

R−1h
ᵀ
∥∥∥
MAX

≤ d1/2‖D̂−1/2
x,KH
‖sp‖ĥ

ᵀ −R−1h
ᵀ‖sp

= OP

(
n−2τ∗−G · and

)
.

(ii) Following (A.15) and noting that Λ̂
∗
H = Λ̂H(ĥ

ᵀ
ĥ)1/2 = d−1/2Λ̂HD̂

1/2
x,KH

, we have∥∥∥Λ̂∗H − d−1/2ΛHDHRD̂
1/2
x,KH

∥∥∥
MAX

= OP

(
n−2τ∗−G · and

)
.

Using the notation of R∗, it can be equivalently written as∥∥∥Λ̂∗H −ΛHDH(h
ᵀ
h)1/2R∗

∥∥∥
MAX

= OP

(
n−2τ∗−G · and

)
.
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(iii) For the first part, it is obvious that ĥ∗Λ̂
∗ᵀ

H = ĥΛ̂
ᵀ

H . For the second part, we have∥∥∥ĥ∗Λ̂∗ᵀH −hDHΛ
ᵀ

H

∥∥∥
MAX

≤
∥∥∥ĥ∗ᵀ − (R∗)−1(h

ᵀ
h)−1/2h

ᵀ
∥∥∥
1
‖ΛH‖MAX

∥∥DH(h
ᵀ
h)1/2R∗

∥∥
1

+
∥∥(R∗)−1(h

ᵀ
h)−1/2h

ᵀ∥∥
1

∥∥∥Λ̂∗H −ΛHDH(h
ᵀ
h)1/2R∗

∥∥∥
MAX

+
∥∥∥ĥ∗ᵀ − (R∗)−1(h

ᵀ
h)−1/2h

ᵀ
∥∥∥
1

∥∥∥Λ̂∗H −ΛHDH(h
ᵀ
h)1/2R∗

∥∥∥
MAX

= OP

(
nτ̄
∗+
G −2τ∗−G · and

)
,

as ‖ΛH‖MAX = O(1),
∥∥DH(h

ᵀ
h)1/2R∗

∥∥
1

= OP (nτ̄
∗+
G ), and∥∥∥ĥ∗ᵀ − (R∗)−1(h

ᵀ
h)−1/2h

ᵀ
∥∥∥

1
≤ K

1/2
H

∥∥∥ĥ∗ᵀ − (R∗)−1(h
ᵀ
h)−1/2h

ᵀ
∥∥∥
sp

= OP (nτ̄
∗+
G · and).

Thus, we obtain the uniformly convergence rate for the common components.

(iv) We next prove that R∗ is an asymptotically orthogonal matrix. By (A.22), we have

R∗
ᵀ
R∗ = d−1D̂

1/2
x,KH

R
ᵀ
(h

ᵀ
h)−1RD̂

1/2
x,KH

= d−1D̂
1/2
x,KH

R
ᵀ
DHΛ

ᵀ

HΛ̂HD̂
−1/2
x,KH

.

Thus by (A.10) and (A.16), we have

‖R∗ᵀR∗ − IKH‖sp
≤ ‖d−1D̂

1/2
x,KH

R
ᵀ
DHΛ

ᵀ

HΛ̂HD̂
−1/2
x,KH

− d−1D̂
1/2
x,KH

R
ᵀ
DHΛ

ᵀ

HΛHDHRD̂
−1/2
x,KH
‖sp

+ ‖d−1D̂
1/2
x,KH

R
ᵀ
DHΛ

ᵀ

HΛHDHRD̂
−1/2
x,KH

− IKH‖sp
= ‖d−1R

ᵀ
DHΛ

ᵀ

HΛ̂H − d−1R
ᵀ
DHΛ

ᵀ

HΛHDHR‖sp
+ ‖d−1R

ᵀ
DHΛ

ᵀ

HΛHDHR− IKH‖sp
= OP (n−2τ∗−G and). (A.23)

We thus complete the proof of Theorem 3.1. 2

To prove Lemma 3.1, we need some intermediate estimators or infeasible estimators related to β̂
and β̂⊥. Recall that β̂⊥ is the matrix of eigenvectors associated with the largest KF eigenvalues of

ŜHH := n−1Ĥ∗cᵀĤ∗c, and that β̂ is the matrix of eigenvectors associated with the rest of the KG

eigenvalues. For a KH ×KH matrix, Ξ, we define SΞ
HH := n−1ΞHcᵀHcΞ

ᵀ
, where Hc = H−H and

H = n−11n
∑n

s=1H
ᵀ

s∆. Replacing ŜHH with SΞ
HH , we can obtain the infeasible estimators, βΞ

⊥ and

βΞ. For simplicity, we use SHH to denote S
IKH
HH . Later on, we will determine a proper choice of Ξ.

Lemma A.3. Suppose that Assumptions 1, 3 and 6 are satisfied. If the eigenvalues of ΞΞ
ᵀ

are
bounded away from zero and infinity uniformly with probability approaching one, then βΞ

⊥ and βΞ

are super-consistent in the sense that

βΞ −Ξ
ᵀ
β[β

ᵀ
ΞΞ

ᵀ
β]−1β

ᵀ
ΞβΞ = OP (n−1), (A.24)
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and
βΞ
⊥ −Ξ−1β⊥[β

ᵀ

⊥(Ξ
ᵀ
)−1Ξ−1β⊥]−1β

ᵀ

⊥(Ξ
ᵀ
)−1βΞ

⊥ = OP (n−1). (A.25)

Proof. We decompose βΞ in the directions of Ξ
ᵀ
β and Ξ−1β⊥ (which are orthogonal) as

βΞ = Ξ
ᵀ
β[β

ᵀ
ΞΞ

ᵀ
β]−1β

ᵀ
ΞβΞ

+Ξ−1β⊥[β
ᵀ

⊥(Ξ
ᵀ
)−1Ξ−1β⊥]−1β

ᵀ

⊥(Ξ
ᵀ
)−1βΞ. (A.26)

Note that βΞ satisfies Ξ−1SHH(Ξ
ᵀ
)−1βΞ = βΞDΞ

S , where DΞ
S is a KG × KG diagonal matrix with

the diagonal elements being the KG smallest eigenvalues of Ξ−1SHH(Ξ
ᵀ
)−1 arranged in a descending

order. Using (A.26) and the equality IKH = β⊥β
ᵀ

⊥ + ββ
ᵀ
, we have

β
ᵀ

⊥Ξ−1βΞDΞ
S =β

ᵀ

⊥ΞΞ−1SHH(Ξ
ᵀ
)−1βΞ

=β
ᵀ

⊥SHHβ[β
ᵀ
ΞΞ

ᵀ
β]−1β

ᵀ
ΞβΞ

+ β
ᵀ

⊥SHHIKH (Ξ
ᵀ
)−1Ξ−1β⊥[β

ᵀ

⊥(Ξ
ᵀ
)−1Ξ−1β⊥]−1β

ᵀ

⊥Ξ−1βΞ

=β
ᵀ

⊥SHHβ[β
ᵀ
ΞΞ

ᵀ
β]−1β

ᵀ
ΞβΞ

+ β
ᵀ

⊥SHHββ
ᵀ
(Ξ

ᵀ
)−1Ξ−1β⊥[β

ᵀ

⊥(Ξ
ᵀ
)−1Ξ−1β⊥]−1β

ᵀ

⊥Ξ−1βΞ

+ β
ᵀ

⊥SHHβ⊥β
ᵀ

⊥(Ξ
ᵀ
)−1Ξ−1β⊥[β

ᵀ

⊥(Ξ
ᵀ
)−1Ξ−1β⊥]−1β

ᵀ

⊥Ξ−1βΞ,

=β
ᵀ

⊥SHHβ[β
ᵀ
ΞΞ

ᵀ
β]−1β

ᵀ
ΞβΞ

+ β
ᵀ

⊥SHHββ
ᵀ
(Ξ

ᵀ
)−1Ξ−1β⊥[β

ᵀ

⊥(Ξ
ᵀ
)−1Ξ−1β⊥]−1β

ᵀ

⊥Ξ−1βΞ

+ β
ᵀ

⊥SHHβ⊥β
ᵀ

⊥Ξ−1βΞ.

Vectorizing this expression, we have

vec(β
ᵀ

⊥Ξ−1βΞ) =
{
DΞ
S ⊗ IKF − IKG ⊗ β

ᵀ

⊥SHHβ⊥

−IKG ⊗ β
ᵀ

⊥SHHββ
ᵀ
(Ξ

ᵀ
)−1Ξ−1β⊥[β

ᵀ

⊥(Ξ
ᵀ
)−1Ξ−1β⊥]−1

}−1

·vec
(
β

ᵀ

⊥SHHβ[β
ᵀ
ΞΞ

ᵀ
β]−1β

ᵀ
ΞβΞ

)
. (A.27)

Recall that β = (OKG×KF IKG)
ᵀ

and β⊥ = (IKF OKF×KG)
ᵀ
. By Lemma B.5, we have

β
ᵀ
SHHβ = n−2

n∑
s=1

Gc
s∆G

cᵀ

s∆ = OP (n−1),

β
ᵀ

⊥SHHβ⊥ = n−1

n∑
s=1

F c
s∆F

cᵀ

s∆ is bounded away from zero,

β
ᵀ
SHHβ⊥ = n−3/2

n∑
s=1

Gc
s∆F

cᵀ

s∆ = OP (n−1),

where Gc
s∆ = Gs∆ − n−1

∑n
s=1Gs∆ and F c

s∆ = Fs∆ − n−1
∑n

s=1 Fs∆. Thus, only the first block,

β
ᵀ

⊥SHHβ⊥, of the matrix SHH =

[
β

ᵀ

⊥SHHβ⊥ β
ᵀ

⊥SHHβ
β

ᵀ
SHHβ⊥ β

ᵀ
SHHβ

]
does not converge to zero. Therefore,

DΞ
S = oP (1), and we have β

ᵀ

⊥Ξ−1βΞ = OP (n−1). Then using (A.26) again, we can prove the
consistency of βΞ. Using the same argument, we can prove the consistency of βΞ

⊥.
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When Ξ = IKH , the results degenerate to Lemma 1 of Harris (1997). When Ξ = (h
ᵀ
h)1/2(R∗),

and replacing SHH with ΞŜHHΞ
ᵀ
, we can prove Lemma 3.1.

Proof of Lemma 3.1. Note that β̂ satisfies ŜHHβ̂ = β̂D̂S, where D̂S is a KG × KG diagonal
matrix with the diagonal elements being the KG smallest eigenvalues of ŜHH arranged in a descending
order. Let Ξ = (h

ᵀ
h)1/2(R∗)

ᵀ
. Following similar arguments in the proof of Lemma A.3, we have

vec(β
ᵀ

⊥Ξ−1β̂) =
{

D̂Ξ
S ⊗ IKF − IKG ⊗ β

ᵀ

⊥[ΞŜHHΞ
ᵀ
]β⊥

−IKG ⊗ β
ᵀ

⊥[ΞŜHHΞ
ᵀ
]ββ

ᵀ
(Ξ

ᵀ
)−1Ξ−1β⊥[β

ᵀ

⊥(Ξ
ᵀ
)−1Ξ−1β⊥]−1

}−1

· vec
(
β

ᵀ

⊥[ΞŜHHΞ
ᵀ
]β[β

ᵀ
ΞΞ

ᵀ
β]−1β

ᵀ
Ξβ̂
)
. (A.28)

Using the convergence results in Lemma B.6 and ‖D̂S‖sp ≤ ‖DΞ
S ‖sp + ‖ŜHH − Ξ−1SHH(Ξ

ᵀ
)−1‖sp =

oP (1), we can prove β
ᵀ

⊥Ξ−1β̂ = OP (n−1). Then following the same arguments as in the proof of
Lemma A.3, we can prove the results. 2

Proof of Theorem 3.2. (ii) and (iii) follow directly from Theorem 3.1 and Lemma 3.1 by noting
that and > n−1.

As for (i), by Theorem 3.1 and Lemma 3.1, we have∥∥∥ĥ∗β̂⊥ −h(Ξ
ᵀ
)−1Ξ−1β⊥Qβ⊥

∥∥∥
sp

= OP

(
n−2τ∗−G · and

)
. (A.29)

Using (β⊥β
ᵀ

⊥ + ββ
ᵀ
) = IKH , we have

h(Ξ
ᵀ
)−1Ξ−1β⊥Qβ⊥ = h(β⊥β

ᵀ

⊥ + ββ
ᵀ
)(Ξ

ᵀ
)−1Ξ−1β⊥[β

ᵀ

⊥(Ξ
ᵀ
)−1Ξ−1β⊥]−1β

ᵀ

⊥(Ξ
ᵀ
)−1β̂⊥

= fβ
ᵀ

⊥(Ξ
ᵀ
)−1β̂⊥ + gβ

ᵀ
(Ξ

ᵀ
)−1Ξ−1β⊥[β

ᵀ

⊥(Ξ
ᵀ
)−1Ξ−1β⊥]−1β

ᵀ

⊥(Ξ
ᵀ
)−1β̂⊥.

Therefore, we only need to prove that the second term on the RHS of the second equality above is
OP (n−2τ∗−G and). Indeed,

β
ᵀ
(Ξ

ᵀ
)−1Ξ−1β⊥ = β

ᵀ
(h

ᵀ
h)−1/2(R∗

ᵀ
R∗)−1(h

ᵀ
h)−1/2β⊥

= β
ᵀ
(h

ᵀ
h)−1β⊥ +OP (n−2τ∗−G and) = OP (n−2τ∗−G and),

where the last two equalities follow from (A.23) and the result that h
ᵀ
h converges to a block diagonal

matrix at rate (log d/n)1/2 using Lemmas B.1–B.3. Thus we complete the proof of (i).

As for (iv), by Theorem 3.1 and Lemma 3.1, we have∥∥∥Λ̂∗Hβ̂ −ΛHDHΞΞ
ᵀ
βQβ

∥∥∥
sp

= OP

(
n−2τ∗−G · and

)
. (A.30)

Following similar arguments to the proof of part (i), we can show that β
ᵀ

⊥ΞΞ
ᵀ
β = OP (n−2τ∗−G and)

and that ∥∥∥ΛHDHΞΞ
ᵀ
βQβ −ΛGDGβ

ᵀ
Ξβ̂
∥∥∥
sp

= OP

(
n−2τ∗−G · and

)
. (A.31)
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Combining (A.30) and (A.31), we complete the proof. 2

Proof of Theorem 3.3.
Since ‖Ln‖sp = 1, using the submultiplicative property of the spectral norm, the convergence rate of
the estimators for the first-differenced factors is also the convergence rate of the estimators for the
cumulated factors. 2
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Appendix B: Auxiliary Lemmas
Recall that ft and ut are increments of continuous-time processes, between t and t − ∆, while

gt and vt are the first-order differences of stationary time series, Gt and Vt, for t = 0,∆, . . . , n∆.
Lemmas B.1–B.3 give the large deviation theory for them. Specially, Lemma B.1 is for ft and ut
only, Lemma B.2 for gt and vt only, and Lemma B.3 for both the continuous-time processes and the
discrete-time processes.

Lemma B.1. Under Assumption 1, we have
(i)
∥∥∑n

s=1 us∆u
ᵀ

s∆ −ΣU

∥∥
MAX

= OP ((log d/n)1/2);

(ii)
∥∥∑n

s=1 fs∆f
ᵀ

s∆ −ΣF

∥∥
MAX

= OP ((log d/n)1/2);

(iii)
∥∥∑n

s=1 us∆f
ᵀ

s∆

∥∥
MAX

= OP ((log d/n)1/2).
(iv) In addition, if Assumptions 4 and 5 hold, we have∥∥d−1

∑n
s=1 Λ

ᵀ

Hus∆u
ᵀ

s∆ΛH − d−1Λ
ᵀ

HΣUΛH

∥∥
MAX

= OP (mU,d(log d/n)1/2).

Proof. Parts (i)–(iii) are the same as Lemma 1 in Aı̈t-Sahalia and Xiu (2017). We only prove part
(iv), as parts (i)–(iii) can be proved similarly. By Bonferroni inequality and Lemma 10 of Tao et al.
(2013b), we have

P

(∥∥∥∥∥
n∑
s=1

d−1Λ
ᵀ

Hus∆u
ᵀ

s∆ΛH − d−1Λ
ᵀ

HΣUΛH

∥∥∥∥∥
MAX

> c

)
≤ K2

h · 4 exp(−nc2/(64C1))

for all 0 ≤ c ≤ µ2
d(d
−1Λ

ᵀ

HΣUΛH) · n1/2, where C1 = 8‖d−1Λ
ᵀ

HΣUΛH‖2
MAX is obtained from Lemma 3

of Fan et al. (2012). By Assumptions 1 and 4, we have that µ2
d(d
−1Λ

ᵀ

HΣUΛH) is bounded away from

zero, and C1 ≤ 8‖d−1Λ
ᵀ

HΣUΛH‖2
sp = O(m2

U,d). Then using the exponential inequality and taking

x = mU,d(log d/n)1/2, we can prove the result.

Lemma B.2. Under Assumption 6, we have
(i)
∥∥n−1

∑n
s=1 vs∆v

ᵀ

s∆ −Σv

∥∥
MAX

= OP ((log d/n)1/2);

(ii)
∥∥n−1

∑n
s=1 gs∆g

ᵀ

s∆ −Σg

∥∥
MAX

= OP ((log d/n)1/2);

(iii)
∥∥n−1

∑n
s=1 vs∆g

ᵀ

s∆

∥∥
MAX

= OP ((log d/n)1/2).
(iv) In addition, if Assumptions 4 and 5 hold, we have∥∥(nd)−1

∑n
s=1 Λ

ᵀ

Hvs∆v
ᵀ

s∆ΛH − d−1Λ
ᵀ

HΣvΛH

∥∥
MAX

= OP (mv,d(log d/n)1/2).

Proof. Parts (i)–(iii) are the same as Lemma C.3 in Fan et al. (2013). Note that, under Assumption
4(i), the mixing coefficient of {vs∆} is bounded by C ′α exp(−sγ2), for some positive constant C ′α. Also
note that vi,s∆ still satisfies the exponential-type tail condition, since

max
1≤i≤d

P (|vi,s∆| > c) ≤ max
1≤i≤d

2P (|Vi,s∆| > c/2)

≤ 2 exp(1− (c/(2b1))γ2) ≤ exp(1− (c/b3)γ4), (B.1)

for 1 ≤ i ≤ d, s = 1, · · · , n, and c > 0, where γ4 ∈ (0, γ2) and b3 > 2b1 max{(γ4/γ2)1/γ2 , (1+log 2)1/γ2},
and the last inequality is shown in the proof of Lemma C.2 of Fan et al. (2011). Again by Lemma
C.2 of Fan et al. (2011), |vi1,s∆vi2,s∆| still satisfies the exponential-type tail condition,

max
1≤i≤d

P (|vi1,s∆vi2,s∆ − E[vi1,s∆vi2,s∆]| > c) ≤ exp(1− (c/b4)γ5), (B.2)
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for 1 ≤ i1, i2 ≤ d, s = 1, · · · , n, c > 0, some b4, and γ5 ∈ (0, γ4/2). Therefore, using the arguments
in the proof of Lemma A.3 in Fan et al. (2011), we can show that

P

(∥∥∥∥∥n−1

n∑
s=1

vs∆v
ᵀ

s∆ −Σv

∥∥∥∥∥
MAX

> C2

√
log d

n

)
= O

(
1

d2

)
for some positive constant C2, which proves part (i). Parts (ii) and (iii) are similar to part (i) and
can be obtained from the inequalities derived in Lemma B.1 of Fan et al. (2011). As for part (iv),
we have

P

(∥∥∥∥∥n−1

n∑
s=1

Λ
ᵀ

Hvs∆v
ᵀ

s∆ΛH −Λ
ᵀ

HΣvΛH

∥∥∥∥∥
MAX

> dmv,d · x

)

≤ K2
H max

1≤j1,j2≤KH
P

(∣∣∣∣∣n−1

n∑
s=1

λ
ᵀ

H,j1
vs∆v

ᵀ

s∆λH,j2 − λ
ᵀ

H,j1
ΣvλH,j2

∣∣∣∣∣ > dmv,d · x

)
. (B.3)

Applying similar arguments in (B.1) and (B.2) and using Lemma C.2 of Fan et al. (2011) under
Assumption 5(iv), we have

max
1≤j1,j2≤KH

P
(
(dmv,d)

−1|λᵀ

H,j1
vs∆v

ᵀ

s∆λH,j2 − E[λ
ᵀ

H,j1
vs∆v

ᵀ

s∆λH,j2 ]| > c
)
≤ exp(1− (c/b5)γ6), (B.4)

for γ6 ∈ (0, γ2γ3/(γ2 + γ3)), c > 0, and some b5 > 0 which does not depend on n and d. Since
|λᵀ

H,j1
vs∆v

ᵀ

s∆λH,j2| satisfies the strong mixing condition, we can follow the same arguments as the
proof of Lemma B.1 in Fan et al. (2011) by applying the Bernstein’s inequality in Theorem 1 of
Merlevède et al. (2011) to obtain

P

(
(dmv,d)

−1

∣∣∣∣∣n−1

n∑
s=1

λ
ᵀ

H,j1
vs∆v

ᵀ

s∆λH,j2 − λ
ᵀ

H,j1
ΣvλH,j2

∣∣∣∣∣ > C3

√
log d

n

)
= O

(
1

d2

)
, (B.5)

for some positive constant C3, which only depends on γ1, γ6 and b5. Then by (B.3) and (B.5), we
can complete the proof of part (iv).

Lemma B.3. Under Assumptions 1, 3 and 6, we have
(i)
∥∥n−1/2

∑n
s=1 us∆v

ᵀ

s∆

∥∥
MAX

= OP ((log d/n)1/2);

(ii)
∥∥n−1/2

∑n
s=1 us∆g

ᵀ

s∆

∥∥
MAX

= OP ((log d/n)1/2);

(iii)
∥∥n−1/2

∑n
s=1 vs∆f

ᵀ

s∆

∥∥
MAX

= OP ((log d/n)1/2);

(iv)
∥∥n−1/2

∑n
s=1 gs∆f

ᵀ

s∆

∥∥
MAX

= OP ((1/n)1/2);

(v)
∥∥n−1/2

∑n
s=1Gs∆(n−1/2F

ᵀ

s∆)
∥∥
MAX

= OP ((1/n)1/2).

Proof. (i) The proof is similar to that of Lemma 11 in Tao et al. (2013b). Since
∑n

s=1 us∆v
ᵀ

s∆ =∑n
s=1 us∆V

ᵀ

s∆ −
∑n

s=1 us∆V
ᵀ

(s−1)∆, we only need to prove

n−1/2

n∑
s=1

us∆V
ᵀ

s∆ = OP ((log d/n)1/2) (B.6)
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and

n−1/2

n∑
s=1

us∆V
ᵀ

(s−1)∆ = OP ((log d/n)1/2). (B.7)

The proofs of (B.6) and (B.7) are similar, so we only provide the former. Denote

Ω0 = {max
1≤i≤d

max
1≤s≤n

|ui,s∆| ≤ 1}.

Using the Bonferroni and Markov inequalities, we have

P(Ωc
0) = P

(
max
1≤i≤d

max
1≤s≤n

|ui,s∆| > 1

)
≤ ndeCσ/2−n. (B.8)

Note that Ut and Vt are independent. Conditional on the whole path of Ut, we have

P

(∥∥∥∥∥n−1/2

n∑
s=1

us∆V
ᵀ

s∆

∥∥∥∥∥
MAX

> c(log d/n)1/2

)

≤ P

(∥∥∥∥∥n−1/2

n∑
s=1

us∆V
ᵀ

s∆

∥∥∥∥∥
MAX

> c(log d/n)1/2,Ω0

)
+ P (Ωc

0)

≤ E

[
P

(∥∥∥∥∥n−1/2

n∑
s=1

us∆V
ᵀ

s∆

∥∥∥∥∥
MAX

> c(log d/n)1/2,Ω0

∣∣∣∣Ut, t ∈ [0, 1]

)]
+O(nde−n)

= E

[
P

(∥∥∥∥∥n−1/2

n∑
s=1

us∆V
ᵀ

s∆

∥∥∥∥∥
MAX

> c(log d/n)1/2

∣∣∣∣Ω0,Ut, t ∈ [0, 1]

)]
+O(nde−n). (B.9)

Note that conditional on the path of Ut and Ω0, us∆V
ᵀ

s∆ satisfies the same mixing condition and
exponential-tail condition for Vs∆, and the coefficients in these conditions only depend on γ1, γ2, and
b1. Thus we can apply the Bernstein’s inequality in Theorem 1 of Merlevède et al. (2011) to obtain
(letting c̄ = c(log d/n)1/2)

P

(∥∥∥∥∥n−1/2

n∑
s=1

us∆V
ᵀ

s∆

∥∥∥∥∥
MAX

> c̄

∣∣∣∣Ω0,Ut, t ∈ [0, 1]

)

≤ nd2 exp

(
− c̄

γ

C4

)
+ d2 exp

(
− c̄2

C5(1 + C6n)

)
+ d2 exp

(
− c̄2

C7n
exp

(
c̄γ(1−γ)

C8((log c̄)γ)

))
= O(1/d2), (B.10)

when (log d)2/γ−1 = o(n) and c is large enough, where γ = 1/γ1 + 1/γ2, and C4–C8 only depends
on γ1, γ2, and b1. Therefore (B.10) holds true uniformly for all path of Ut satisfying Ω0. Combining
(B.9) and (B.10), we can prove (B.6). The proofs of (ii)–(v) are similar to that of (i) by choosing
proper c̄. So we omit them to save space.
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Lemma B.4. Under Assumptions 1–6, we have
(i)
∥∥wᵀ

w −Σw

∥∥
MAX

= OP ((log d/n)1/2 · n2τ̄∗+V );

(ii)
∥∥wᵀ

hDH

∥∥
MAX

= OP

(
(log d/n)1/2 · nτ̄∗+V +τ̄∗+G

)
;

(iii)
∥∥DHh

ᵀ
w
∥∥

1
= OP

(
(log d/n)1/2 · nτ̄∗+V +τ̄∗+G

)
;

(iv) ‖w‖sp = OP (d1/2(log d/n)1/4 · nτ̄∗+V +m
1/2
U,d + nτ̄

∗
Vm

1/2
v,d );

(v) ‖Λᵀ

Hw
ᵀ‖sp = OP (d1/2(log d/n)1/4 · nτ̄∗+V + d1/2(m

1/2
U,d + nτ̄

∗
Vm

1/2
v,d ));

where τ̄ ∗+G = (1/2 + τ̄G)+, τ̄ ∗V = (1/2 + τ̄V ), and τ̄ ∗+V = (1/2 + τ̄V )+.

Proof. For part (i), recall that ww
ᵀ

=
∑n

s=1(us∆ + DV vs∆)
ᵀ
(us∆ + DV vs∆) and Σw = ΣU +

nDV ΣvDV . By Lemmas B.1(i), B.2(i) and B.3(i), we have

∥∥wᵀ
w −Σw

∥∥
MAX

≤

∥∥∥∥∥
n∑
s=1

us∆u
ᵀ

s∆ −ΣU

∥∥∥∥∥
MAX

+ 2n1/2‖DV ‖

∥∥∥∥∥n−1/2

n∑
s=1

us∆v
ᵀ

s∆

∥∥∥∥∥
MAX

+n‖DV ‖2
sp

∥∥∥∥∥n−1

n∑
s=1

vs∆v
ᵀ

s∆ −Σv

∥∥∥∥∥
MAX

= OP

(
(log d/n)1/2 · n2τ∗+V

)
.

For part (ii), by Lemmas B.1(iii), B.2(iii), B.3(ii) and B.3(iii), we have

∥∥wᵀ
hDH

∥∥
MAX

≤

∥∥∥∥∥
n∑
s=1

us∆f
ᵀ

s∆

∥∥∥∥∥
MAX

+ n‖DV ‖sp

∥∥∥∥∥n−1

n∑
s=1

vs∆g
ᵀ

s∆

∥∥∥∥∥
MAX

‖DG‖sp

+n1/2

∥∥∥∥∥n−1/2

n∑
s=1

us∆g
ᵀ

s∆

∥∥∥∥∥
MAX

‖DG‖sp + ‖DV ‖sp

∥∥∥∥∥
n∑
s=1

vs∆f
ᵀ

s∆

∥∥∥∥∥
MAX

= OP

(
(log d/n)1/2 · (1 + n1+τ̄V +τ̄G + n1/2+τ̄G + n1/2+τ̄V )

)
= OP

(
(log d/n)1/2 · (1 + n1/2+τ̄V )(1 + n1/2+τ̄G)

)
= OP

(
(log d/n)1/2 · nτ̄

∗+
V +τ̄∗+G

)
.

Part (iii) follows from part (ii) as
∥∥hᵀ

w
∥∥

1
≤ KH

∥∥hᵀ
w
∥∥
MAX

. Part (iv) follows from ‖w‖sp =∥∥wᵀ
w
∥∥1/2

sp
≤ (d

∥∥wᵀ
w −Σw

∥∥
MAX

+ ‖Σw‖sp)1/2 and ‖Σw‖sp ≤ (‖Σw‖1 ‖Σw‖∞)1/2 = ‖Σw‖1 =

O(mU,d + n2τ∗Vmv,d). Lastly, we consider part (v). By Lemmas B.1(iv) and B.2(iv), we have

‖Λᵀ

Hw
ᵀ‖sp = ‖Λᵀ

Hw
ᵀ
wΛH‖1/2

sp

≤ (‖Λᵀ

H(w
ᵀ
w −Σw)ΛH‖sp + ‖Λᵀ

HΣwΛH‖1)1/2

≤ (KH‖Λ
ᵀ

H(w
ᵀ
w −Σw)ΛH‖MAX + ‖Λᵀ

H‖1‖Σw‖1‖ΛH‖1)1/2

= OP

(
d1/2(m

1/2
U,d + nτ̄

∗
Vm

1/2
v,d )(log d/n)1/4 · nτ̄

∗+
V + d1/2(m

1/2
U,d + nτ̄

∗
Vm

1/2
v,d )
)

= OP

(
d1/2(m

1/2
U,d + nτ̄

∗
Vm

1/2
v,d )(1 + nτ̄

∗+
V (log d/n)1/4)

)
.
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Lemma B.5. Under Assumptions 1, 3 and 6, we have
(i)
∥∥n−1

∑n
s=1(n−1/2Gc

s∆)(n−1/2Gcᵀ

s∆)
∥∥
MAX

= OP (n−1);

(ii) n−1
∑n

s=1 F
c
s∆F

cᵀ

s∆
d→
∫ 1

0
(
∫ t

0
σfudB

F
u −

∫ 1

0
σfudB

F
u )(
∫ t

0
σfudB

F
u −

∫ 1

0
σfudB

F
u )

ᵀ
dt;

(iii)
∥∥n−1

∑n
s=1(n−1/2Gc

s∆)F cᵀ

s∆

∥∥
MAX

= OP (n−1);

where Gc
s∆ = Gs∆ −G, F c

s∆ = Fs∆ − F , G = n−1
∑n

s=1Gs∆, and F = n−1
∑n

s=1 Fs∆.

Proof. Parts (i) and (ii) are trivial. For part (iii), by Lemma B.3(v), we have∥∥∥∥∥n−3/2

n∑
s=1

Gc
s∆F

cᵀ

s∆

∥∥∥∥∥
MAX

= n−1/2

∥∥∥∥∥n−1

n∑
s=1

Gs∆F
ᵀ

s∆ −G F
ᵀ

∥∥∥∥∥
MAX

= OP (n−1).

Lemma B.6. Under Assumptions 1–8, we have
(i) ‖n−1H∗cᵀH∗c‖sp = OP (1);

(ii)
∥∥∥Ĥ∗cΞ

ᵀ −Hc
∥∥∥
MAX
≤
∥∥∥Ĥ∗cΞ

ᵀ −Hc
∥∥∥
sp

= OP

(
n−2τ∗−G · and

)
;

(iii) n−1‖ΞĤ∗cᵀĤ∗cΞ
ᵀ −H∗cᵀH∗c‖ = OP

(
n−1/2−2τ∗−G · and

)
;

where Ξ is defined in Lemma 3.1.

Proof. (i) By Lemma B.4, the dominate term is n−1
∑n

s=1 F
c
s∆F

cᵀ

s∆, which is of order OP (1).(ii) By

Theorem 3.1, we have∥∥∥Ĥ∗Ξ
ᵀ − (H − 1nh

ᵀ

0)
∥∥∥
MAX
≤
∥∥∥Ĥ∗Ξ

ᵀ − (H − 1nh
ᵀ

0)
∥∥∥
sp

= OP

(
n−2τ∗−G · and

)
.

Since Ĥ∗cΞ
ᵀ

= (In− 1n1
ᵀ

n/n)ĤΞ
ᵀ
, HcΞ

ᵀ
= (In− 1n1

ᵀ

n/n)(H− 1nh
ᵀ

0) and ‖In− 1n1
ᵀ

n/n‖sp = 1, we

then have
∥∥∥Ĥ∗cΞ

ᵀ −Hc
∥∥∥
sp

= OP

(
n−2τ∗−G · and

)
.

(iii) The result follows by noticing that

‖ΞĤ∗cᵀĤ∗cΞ
ᵀ −H∗cᵀH∗c‖

≤
∥∥∥Ĥ∗cΞ

ᵀ −Hc
∥∥∥
sp
‖Hc‖sp +

∥∥∥Ĥ∗cΞ
ᵀ −Hc

∥∥∥2

sp

= OP

(
n1/2−2τ∗−G · and

)
.
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